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Abstract 

Automated phonocardiogram (PCG) analysis may 
provide better clinical information to physicians for 
analyzing and diagnosing different heart abnormalities. 
However, despite recent advances in PCG analysis 
methods, it is still a challenging task to extract accurate 
and useful information from contaminated heart sound 
recordings. The main objective of this paper is to 
introduce a new approach for classification of normal 
and abnormal heart sound recordings using a nested 
ensemble of algorithms that includes Random Forest, 
LogitBoost and a Cost-Sensitive Classifier. 

The approach consisted of three stages: preprocessing, 
classification and evaluation. In the preprocessing stage, 
PCG signals were first downsampled to 1 kHz using a 
polyphase antialiasing filter. Next, each heart sound was 
segmented using Springer’s improved version of 
Schmidt’s method to identify four states; S1, S2, systole 
and diastole. Thereafter, 131 features in time, frequency, 
wavelet and statistical domains were extracted from the 
entire signal and from the timings of the states.  In the 
classification stage, the meta-classifier was cross 
validated on the entire training dataset provided by 
Physionet Challenge 2016. In the evaluation stage, the 
sensitivity and specificity of the trained algorithm was 
tested with unseen signals selected randomly by the 
Challenge testing environment. Experimental results 
showed that the proposed approach achieved an overall 
score of 84.48%, ranking fifth. The use of a nested set of 
ensemble classifier with a combined set of features 
extracted from different domains helped reduce 
overfitting and improved  classification performance. 

 
1. Introduction 

Cardiovascular disease is the number one cause of 
death in the world.  Phonocardiogram (PCG) signals are 
used for heart disease detection. They contain bioacoustic 
information reflecting the operation of the heart. 
Normally, they comprise two distinct activities, namely 

the first heart sounds S1 and S2, and may contain 
additional murmurs that indicate heart failure. These 
murmurs may overlap in time and frequency domains 
with S1 and S2, augmenting the difficulty of developing a 
robust PCG signal classifier to discriminate between 
normal and abnormal.  To this end, PhysioNet organized 
the Challenge2016 to encourage the development of 
efficient algorithms that can identify whether the subject 
is healthy or suffers from heart disease[1].  

Ensemble machine learning algorithms combine the 
predictions of several learning models into a single 
“ensemble” model, with the objective of improving their 
performance [2]. Common approaches to ensemble 
learning include bagging, boosting, and stacking, amongst 
others.  Most studies of PCG classification to date have 
employed a single machine learning algorithm, such as 
Support Vector Machine (SVM)[3], Artificial Neural 
Networks (ANN)[4], etc. In this context, it was our aim to 
contribute a challenge entry based on a rather elementary 
decision tree classifier, but made more robust by virtue of 
its nesting within three ensemble classifiers: Random 
Forests (RF), LogitBoost (LB) and a Cost-Sensitive 
Classifier (CSC). 

The paper is organized as follows. In section 2 the 
proposed methodology is described. In section 3 the 
results using PhysioNet-Computers in Cardiology 
Challenge 2016 datasets are presented and discussed. 
Finally, conclusions are presented in section 4. 

 
2. Methods 

The approach described was developed and validated 
using the PhysioNet Challenge 2016 datasets [1]. The 
challenge dataset consists of a collection of heart sound 
recordings at 2000Hz from 764 subjects/patients, lasting 
from 5s to just over 120s [1].  The proposed new system 
is built to classify PCG signals into normal or 
pathological. Figure 1 outlines the components and signal 
flow of our approach which consists of three major 
phases: Preprocessing, Classification and Evaluation.



2.1. Preprocessing phase 
 

During this phase, the PCG signals were first 
resampled at 1000Hz using a polyphase antialiasing filter. 
Next, each heart sound was segmented using Springer’s 
improved version of Schmidt’s method [5] to identify 
four ‘states’; S1, S2, systole and diastole.  Finally, several 
time domain, frequency domain, statistical features, and 
features generated by 5-level wavelet decomposition were 
extracted from the position information of the four states 
and from the entire signal data. A total of 131 features 
were obtained and summarized in table 1.  
 

Table 1: List of Features Extracted for Classification 
  

Qty  Feature(s) Per S1,S2,  
Dia, Sys 

Domain 

20 m_RR, sd_RR, 
mean_IntS, sd_IntS1, 
mean_IntS2,  sd_IntS2, 
mean_IntSys, 
sd_IntSys, 
mean_IntDia, 
sd_IntDia, 
m_Ratio_SysRR, 
sd_Ratio_SysRR 
m_Ratio_DiaRR 
sd_Ratio_DiaRR 
m_Ratio_SysDia 
sd_Ratio_SysDia, 
m_Amp_SysS1 
sd_Amp_SysS1, 
m_Amp_DiaS2 and 
sd_Amp_DiaS2 [1] 

 Time and 
statistical 

    

1 HR  Time 
4 ZCR     
4 TD    
4 RMS   
4 TotPowT     

    

4 TotPowF   Frequency 
4 BW     
4 Qf    
    

4 Max   Statistical 
4 Mean   
4 Variance     
4 Skewness    
4 Kurtosis    
4 SampEn    
4 SE1    
    

6 SE2 (5-level wavelet)  Statistical and 
Wavelet 24 SE3 (5-level wavelet)  

24 SE4 (5-level wavelet)  
131    Total 

 
As can be observed from the above table, the first 20 

features were the same used in [1], while the rest of the 
features were proposed in this research and explained as 
below.  A checkmark in the third column indicates that 
the feature was calculated for each of the 4 cardiac cycles 
(S1, S2, systole and diastole): 

 
 Heart Rate (HR) refers to the number of times a 

person’s heart beats per minutes. An abnormal heart 
rhythm is when heart beats too fast, slow, or 
irregularly. 

 Zero Crossing Rate (ZCR) represents the rate of sign-
changes along an interval. Higher ZCR is expected 
more frequently for abnormal signals. 

 Time Duration (TD) indicates the length of S1, S2, 
SYS or DIA in seconds. Considerably longer S1 and 
S2, and shorter SYS and DIA could be expected for 
abnormal signal than for the normal signal. 

 RMS refers to the square-root of mean of square of 
the waveform.  

 Total Power is the total power of the PCG signal. The 
abnormal signals tend to have higher power than the 
normal ones, because of the murmur’s amplitude. 
This measure is calculated in time (TotPowT) and 
frequency domains (TotPowF). Frequency domain 
calculation is performed using the Fast Fourier 
Transform (FFT). 

 Bandwidth (BW) is the difference between the upper 
and lower frequencies in an effective set of 
frequencies. As murmur signals are high in 
frequency, the upper frequencies of bandwidth will 
be affected. 

 Q-Factor (Qf) describes how under-damped the 
oscillation in the signal is. Hence, in case of 
abnormality the Q-factor would increase[4]. 

 Max refers to the maximum value of the signal. 
Abnormal signals can get higher or lower maximums 
depending of the anomalies. 

 Mean represents the average value of the signal. A 
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Figure 1. The block diagram of the proposed methodology 
employed to construct and test the proposed classifier 



higher mean is expected for abnormal signals. 
 Variance denotes the signal distribution variance. 
 Skewness is a measure of the asymmetry of the 

probability distribution of the signal. 
 Kurtosis reflects whether the signal distribution is flat 

or peaky. 
 Sample Entropy (SampEn) is a useful tool for 

investigating the dynamics of heart rate and other 
time series, thereby diagnosing abnormal state. 

 Shannon Entropy (SE) represents the randomness or 
unpredictable information present in a signal. This 
was calculated in several ways either on the PCG 
signal itself or on a five-level discrete wavelet signal 
decomposition (i.e., with 5 detail coefficients and 1 
approximation coefficient):  
o SE1: mean SE per segment type.  
o SE2: SE of each wavelet coefficient (Daubechies 

db1 mother wavelet). 
o SE3: mean SE per segment type per wavelet 

coefficient (Daubechies db4 mother wavelet). 
o SE4: SE of all samples per segment type per 

wavelet coefficient (Daubechies db4 mother 
wavelet). 

 
2.2. Classification phase 

In the classification phase, a nested set of ensemble 
classifiers was employed: Cost-Sensitive Classifier 
(CSC), LogitBoost(LB) and Random Forest(RF). It was 
trained and tested separately on both Physionet2016 
datasets using 10-fold stratified cross-validation. 

RF is a meta-learning approach that uses multiple 
random decision trees as base learners and aggregates 
them to compute the final ensemble prediction [2, 6]. RF 
involves sampling of the input data with replacement 
(bootstrap sampling). In this sampling, about one third of 
the data is used for testing. These are called the out of bag 
samples. Error estimated on these out of bag samples is 
called the Out of Bag error (OOB). An RF has three 
parameters that can affect its performance: 
 Number of features to choose at each node for 

splitting (NF). 
 Number of trees to grow in the forest (NT): 

Increasing the number of trees in a RF does not result 
in overfitting. 

 Maximum depth of tree (MDT): Higher values 
generally increase the quality of the prediction, but 
can lead to overfitting. High values also increase the 
training and prediction time. If there is no depth 
limit, the tree is split until each node contains a single 
target value.  

LogitBoost (LB) is a boosting algorithm that was first 
used with DNA microarray data [6] by Dettling and 
Bühlmann. LB is less sensitive to outliers and generally 
gives lower error rates than the commonly used AdaBoost 

algorithm, which is attributed to its use of logistic 
regression as the cost functional. 

CSC incorporates arbitrary misclassification costs into 
the learning process. Misclassification penalties are 
associated with each of the four outcomes of a (binary) 
confusion matrix, referred to as CTP, CFP, CFN and CTN.  

TP (True Positive) is the total number of correct 
positive classifications, TN (True Negative) is the total 
number of correct rejections, FP (False Positive) 
represents the total number of misclassified instances that 
were incorrectly classified as positive, and FN (False 
Negative) is the proportion of positive instances that are 
wrongly diagnosed as negative. 

No costs are usually assigned to correct classifications, 
so CTP and CTN are set to 0. Since the positive class is 
often (and in our case) more interesting than the negative 
class, so CFN is generally greater than CFP [6]. Thus, the 
main objective of CSC is to minimize the expected 
overall cost as a function of the two error types, given by: 
Cost=CFP*FP+CFN*FN.  

 
2.3. Evaluation phase 

The proposed classifier performance was evaluated by 
using two new metrics proposed by the challenge: 
modified Sensitivity (Se) and modified Specificity (Sp). 
The overall score is given by 2/(ܵ+݁ܵ)=ܿܿܣܯ which 
represents the average of the values of Se and Sp[1]. 

 
3. Results and discussions 

The Physionet dataset contains 3153 recordings, out of 
which 2488 recordings are labelled as Normal and 
remaining 665 recordings are labelled as abnormal. The 
imbalance ratio between the two classes is therefore 
2488/665=3.74. The dataset was first preprocessed to 
extract 131 features for the proposed classifier. Classifiers 
were constructed using stratified 10-fold cross validation.  
Table 2 displays the training and test MAcc scores of 7 
entries in ascending order. 

The first two entries addressed the problem of class 
imbalance in two ways. In the first one, the oversampling 
method SMOTE (Synthetic Minority Over-sampling 
Technique) [2, 6] was employed, while in the second one, 
the signal was divided into 3 parts. Each new sub-signal 
was preprocessed and added as a new instance to the 
training dataset.  In both entries, a LB based on RF 
classifier was trained and tested using the default 
parameters given in Weka [6], which are: NF= 8, 
NT=100, MDT=unlimited and the number of LogitBoost 
iterations (LB-IT=10) that minimized the root mean 
squared error.  Although these classifiers exhibited the 
highest sensitivity, specificity and MAcc in training and 
testing, they yielded the lowest entries scores of 75.7% 
and 75.6% respectively.  Additionally, it can be noted that 



there was a large discrepancy between high specificity 
and lower sensitivity, yielding high false negative rates. 

In the last 5 entries, sensitivity-specificity balance was 
improved and false negatives rates were reduced by 
assigning a higher cost to false negatives than false 
positives. Thus, the classifiers’ outputs were adjusted by 
changing their probability thresholds (penalties) from the 
default value of pt=0.5 to pt= 6/(6+1)=0.8571 in Entry 3 
and to  pt=8/(8+1)=0.8888 in Entries 4, 5, 6 and 7.  The 
threshold was calculated from the Cost Matrix (CM) as 
follows: pt=CFP/(CFP+CFN). Although, Entry 7 had 
greater cost (652) than Entry 6 (600), it yielded our best 
overall score of all the submitted entries of 84.48%, 
ranking fifth out of the 48 participants of the challenge, 
achieving the third highest Se of 88.48%, but with a 
relatively modest Sp of 80.48%.  

Entries 4, 5, 6 and 7 tuned LB-IT to 3 and NF to 43 to 
address the lower value of OOB calculated for each tree 
and obtained in that iteration.  

In Entry 5, normalized weight was assigned to each 
instance according to a misclassification cost matrix. That 
is, instances, which carried a higher misclassification 
cost, were assigned proportionally higher weights. 
Instances with higher weight can therefore be viewed as 
instance duplication. This entry yielded similar results to 
other CSC classifiers, with sensitivity and specificity of 
81.2% and 85.2% respectively. 

 
4. Conclusions 

The proposed approach seems promising for 
classifying heart sound recordings collected from 
heterogeneous environments. Nevertheless, the 
performance of the detector strongly depends on the 
quality of the data.  Furthermore, we suggest that the 
number of examples of the minority class may have been 

too small for classifiers to learn adequately; the training 
data may have been insufficient to represent well the 
plethora of abnormalities attributable to heart disease. 
Finally, future works will employ pre-processing methods 
to determine the most discriminating features from our 
large set and to gain insight into developing more 
improved features. 
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Table 2: Results of different experiments and entries 
 

#  Classifier NF NT LB- 
IT 

CM Cost Training Testing Entries Results 
 Se 

% 
Sp 
% 

MAcc 
% 

Se 
% 

Sp 
% 

MAcc 
% 

Se 
% 

Sp 
% 

MAcc 
% 

1 LB+RF 8 100 10 - - 98.6 93.4 96.0 83.3 94.5 92.2 58.2 93.1 75.7 
2 LB+RF 8 100 10 - - 91.1 99.4 97.7 92.7 99.8 98.2 57.2 94.1 75.6 
3 RF+LB+CSC 8 100 10 0,6 

1,0 
1049 80.0 95.1 91.9 80.2 95.6 92.6 76.5 85.2 80.8 

4 RF+LB+CSC 43 120 3 0,8 
1,0 

1200 93.5 87.1 88.5 92.1 88.9 89.5 82.1 83.2 82.7 

5 RF+LB+CSC 43 120 3 0,8 
1,0 

7052 91.8 88.4 88.9 89.7 89.7 89.7 81.2 85.2 83.2 

6 RF+LB+CSC 43 150 3 0,8 
1,0 

600 93.9 85.5 87.3 94.4 86.3 88.0 84.2 83.2 83.7 

7 RF+LB+CSC 43 100 3 0,8 
1,0 

652 94.2 86.0 87.8 94.4 86.9 88.4 88.48 80.48 84.48 


