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Abstract 

The physiological signals such as the 
electrocardiogram (ECG) and arterial blood pressure 
(ABP) in the ICU are often severely corrupted by noise, 
artifact and missing data, producing large errors in the 
estimation of the characteristics of the signals values, 
leading to false alarms in ICU. In order to solve this 
problem, we started with the signal quality assessment of 
vital signals in intensive care patients using a derived 
signal quality index (SQI) to reveal the degree of signal 
quality. And then we use the SQI-weighted residual error 
of Kalman filters (KF) to complete the date fusion for 
evaluating the heart rate (HR). Finally, the algorithm of 
arrhythmia false alarm reduction in ICU monitors was 
developed based upon the method of combining SQIs and 
HR estimations derived from ECG waveform and ABP 
waveform recorded from ICU patients. Results show that 
the overall True Positive Rate (TPR), True Negative Rate 
(TNR) and overall score for the Event-1 are respectively 
65%, 82%, and 53.19, for the Event-2, the TPR, TNR and 
overall score are 65%, 87%, and 54.64. 

1. Introduction

Physiological signals such as the electrocardiogram 
(ECG) and arterial blood pressure (ABP) in the intensive 
care unit (ICU) are often severely corrupted by noise, 
artefact and missing data, producing large errors in the 
estimation of the characteristics of the signals, such as the 
heart rate (HR) and ABP [1,2]. Frequent false alarms due 
to data corruption will result in not only a serious waste 
of time, resources, but also sleep deprivation for patients 
and stress induction for patients and staff, eventually 
causing a desensitization of clinical staff to real alarms 
and a consequent decline in the overall level of care [3]. 
Therefore, a robust method of HR estimation with 
accurate SQI calculation is essential for ICU monitoring 
which can reduce false alarms.  

Noise and artefact in biological signals can be 

categorised into two major groups based on their 
frequency contents: (1) low frequency disturbances such 
as baseline wander caused conventionally by muscular 
activities and respiration; (2) high frequency noises such 
as power-line noise, vibration of vacuum cups of the ECG 
machine and electronic reactions of the acquisition 
system. So far many ECG signal denoising methods have 
been developed, which can be roughly classified into 
three categories, the classical methods of digital filter and 
adaptive filter method [4], the wavelet transform method 
and mathematical morphology and neural network as a 
representative of modern high-tech filter methods [5]. 
Considering the denoising result and time, we selected 
wavelet transform method to deal with the problem. 

After filtering the signals with the wavelet transform 
method, a novel method of signal quality assessment was 
developed based on modifying Townsend and 
Tarrasenko's methods to fuse signal quality indices of 
different types of data from multiple sensors [6-8]. This 
method provides a continuously updating estimation of 
the heart rate that would reduce the false alarms in the 
ICU. Based on the SQI estimation, the disturbance of 
high levels of noise and artefact in the signal analysis was 
greatly suppressed. Physiological SQIs were obtained by 
analyzing the statistical characteristics of each waveform 
and their relationships to each other. The SQI of ECG 
signals was obtained by the number of matched QRS 
complex basing on K-means algorithm [9] and improved 
Tompkins difference algorithm [10], respectively, while 
the SQI of ABP signals was obtained by a combination of 
two algorithms: a beat-by-beat fuzzy logic-based 
assessment of features in the ABP waveform [11] and 
heuristic constraints of each ABP pulse [12] to determine 
normality. After that, we use the SQI-weighted residual 
error of Kalman filters (KF) [6-8] to complete the date 
fusion for evaluating the HR. 

2. Dataset

The training and test sets were divided into two subsets 
of mutually exclusive patient populations. The training 

1189ISSN 2325-8861 Computing in Cardiology 2015; 42:1189-1192.



set contains 750 recordings and the test set contains 500 
recordings (which was used for scoring the algorithm 
only). For data from each patient, no more than three out 
of total five categories of alarms were used, which were 
at least 5mins apart (usually longer). An alarm was 
triggered 5 minutes from the beginning of each record. 
All signals were resampled to 12 bit, 250 Hz. Each 
recording contained two ECG leads (which might or 
might not be the leads that triggered the alarm) and one or 
more pulsatile waveforms (the photoplethysmogram 
and/or arterial blood pressure waveform). 

3. Method

Figure 1 outlines the flow of our approach. The 
architecture of our proposed algorithm included signal 
filtering，calculation and assessment of combined ECG 
and ABP SQI，data fusion for HR estimation using KF 
and judgement of false alarms in sequence. Each major 
step was explained in more detail in the five upcoming 
subsections. 

Figure 1. Flow chart of our approach. 

3.1. Filtering 

For signal denoising, each original ECG signal was 
decomposed by multi-level discrete wavelet that was 
equivalent of input  ECG signal was divided into low 
frequency (ai) and high frequency(di) components and 
then put the low frequency component into the next layer 
to decompose. In this study, we decomposed original 
ECG signal into eight scales with coif4 wavelet [13], d1 
to d8 are the detail components representing the high-
frequency of ECG signals. It was found that the high-
frequency noise was mainly determined by d1 to d3. 
Therefore, values of d1 to d3 were set to zeros to filter the 
high-frequency noise. 

3.2. Combined ECG SQI 

After signal denoising, a derived signal quality index 
(SQI) was applied to evaluate the degree of signal quality 
for better alarms judgement. In order to evaluate of signal 
quality of each ECG signal, first, two different algorithms 
were applied in QRS detection basing on K-means 
algorithm [9] and improved Tompkins difference 

algorithm [10], respectively. Then, the number of QRS 
complex detected by each method was calculated. The 
SQI of each ECG signal was determined by two factors: 
(1) the ratio of the number of QRS complex detected by 
one algorithm to the other (Eq. 1); and (2) the ratio of the 
number of matched QRS complex detected by both 
algorithms (Eq.2). Then, the SQI of the ECG was 
evaluated during both the whole ECG period (globe 
assessment) and the alarm interval (local assessment) 
(Eq.3). The final SQI of the ECG was determined by 
combining the SQIs achieved in global and local 
assessment (Eq.4). The combined ECG SQI was 
calculated as follows: 
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where η1=0.5, η2=0.4 are the positive coefficients which 
correspond to the weight of each factor in SQI calculation 
selected by experiment experience, Nmatched is the number 
of QRS complex that both algorithms, N1 is the number 
of QRS complex detected by K-means algorithm and N2 
is the number of QRS complex detected by the improved 
Tompkins difference algorithm. SQI ranges between 0 
and 1. Figure 2 shows the detected QRS complex by 
Tompkins difference algorithm. 

Figure 2. Detected QRS complex by the Tompkins 
difference algorithm. 

3.3. Combined ABP SQI 

In order to evaluate of signal quality of ABP signal, 
ABP SQI calculation was based on a combination of two 
algorithms: a beat-by-beat fuzzy logic-based assessment 
of features in the ABP waveform [11] and heuristic 
thresholding of each ABP pulse [12] which are known as 
wSQI and jSQI respectively. The wSQI algorithm 
consisted of an ABP pulse detection routine (using an 
open-source ABP onset detection algorithm, wabp [14]), 
a waveform feature extraction routine, a waveform 
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feature fuzzy representation and a fuzzy reasoning 
procedure. The calculated wSQI ranged between 0 and 1 
and values of wSQI above 0.5 indicated that the quality of 
a given ABP signal was good where reliable heart rate 
and blood pressure estimation could be made. The same 
beat detection algorithm was used for jSQI calculation 
and generated a binary value representing the feature of 
an ABP signal: 0 for the normal beat and 1 for the 
abnormal beat. The final ABP SQI was determined by 
combing wSQI and jSQI [15] as follows: 

0
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wSQI if jSQI
ABPSQI

wSQI if jSQI


  
       (5) 

where η=0.7 is the positive coefficient was selected 
according to experiment experience. If jSQI indicated a 
good quality signal (jSQI=0), wSQI was adopted as the 
ABP SQI. Otherwise, wSQI was less trusted and 
therefore modified by the coefficient η. Figure 3 shows 
the detected ABP onset. 

Figure 3. Detected ABP onset. 

3.4. Data fusion for HR estimation 

As for alarm judgement, in addition to SQI, HR 
estimation is another crucial factor. In this study, a 
method of data fusion, which was developed by 
combining of KF with SQI calculation [15], was used for 
HR estimation. The KF is an optimal state estimation 
method for a stochastic signal [16,17] that estimates the 
state of a discrete time controlled process. First, the ECG 
and ABP signals were filtered by KF separately. Then, 
the SQI-weighted residual errors (r) derived from KF 
were applied to calculate HR using modified Townsend 
and Tarassenko method [6-8]. The details of HR 
estimation was shown as follows： 
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where HR1 is the heart rate derived from the ECG, HR2 is 
derived from the ABP, and  22

1 1 1r SQI   and 

 22
2 2 2r SQI  are the weight coefficients corresponding 

to HR1 and HR2 respectively. With this method, when 
ECG signal is corrupted by artifact and the HR1 is 
miscalculated, the derived SQI1 will be low and the 
residual error (r1) will be large due to acute changes of 
HR1. Therefore, the weight coefficient of HR1 
(  2 2 2

2 1 2   ) in total HR estimation will decrease, 

which means HR2 rather than HR1 dominates the total HR 
estimation in this condition. Therefore, this method of HR 
estimation reduced the influence of low quality signal on 
the accuracy of HR estimation. 

3.5. The judgement of false alarms 

In this challenge, we focused only on life threatening 
arrhythmias, namely asystole, extreme bradycardia, 
extreme tachycardia, ventricular tachycardia, and 
ventricular flutter/fibrillation. In order to reduce the 
occurrence of false alarm, the standards of false alarms 
judgement for each arrhythmia were summarized in Table 
1. As seen in Table 1, we used RR interval, HR and SQIs
to judge false alarms, for each arrhythmia the parameters 
threshold setting are selected by experiment experience.  

Table 1. The judgement of false alarms. 

Five type 
arrhythmias 

Sandards of false alarms judgement 

Asystole 

Extreme 
Bradycardia 
Extreme 
Tachycardia 
Ventricular 
Tachycardia 
Ventricular 
Flutter or 
Fibrillation 

RR(ECG)max or BB(ABP)max<4s 
and SQI=max(ECGSQI, ABPSQI)>0 
HRmin>40 and  
SQI=max(ECGSQI,ABPSQI)>0.5 
HRmax<140 and  
SQI=max(ECGSQI,ABPSQI)>0.9 
HRmax<100, QRS(width)max<0.12 
and SQI=max(ECGSQI,ABPSQI)>0.5 
HRmax<150 and  
SQI=max(ECGSQI,ABPSQI)>0.5 

4. Results

Based on the method described above, false alarms in 
test set of PhysioNet database were estimated. TPR, TNR 
and Score of five type arrhythmias in the Event-1 and 
Event-2 were listed in Table 2. 

In this study, the TPRs of extreme bradycardia and 
extreme tachycardia were greater than or equal to 90 %, 
which indicated that our method has a good accuracy in 
true alarm judgement for these two diseases. The TNRs 
of asystole and ventricular flutter/fibrillation were greater 
than or equal to 90 %, which indicated that our method 
has a good accuracy in false alarm judgement for these 
two diseases. TPR represents the reduction rate of false 
alarms which is more important than TNR in this 
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challenge. In general, the reduction rates of five diseases 
are greater than or equal to 60 %. 

Table 2. Challenge scores for Event1 and Event2. 

TPR 
(%) 

TNR 
(%) 

Score 

Asystole 
Extreme Bradycardia 
Extreme Tachycardia 
Ventricular tachycardia 
Ventricular Flutter/Fibrillation 
Event1(Real-time) 
Event2(Retrospective) 

33 
90 
92 
19 
56 
65 
65 

96 
86 
60 
76 
90 
82 
87 

67.98 
75.22 
68.03 
38.43 
66.22 
53.19 
54.64 

5. Discussion

After denoising，we applied a novel method of signal 
quality indices assessment to eliminate the effects of 
noise and artefact on HR estimation. It was found that an 
appropriate choice of signal quality threshold was 
important in producing a better HR estimation and 
reduced the occurrence of the false alarms. Data fusion of 
the ECG and the ABP significantly improved HR 
estimation when the ECG was completely corrupted by 
noise and artefact.  

Two algorithms were applied to improve the precision 
of QRS detection and to assess signal quality. It is notable 
that thresholds for individual signal quality assessment 
were tightly correlated with the occurrence of the false 
alarms which needs more tests on different types of data. 
In future studies, this method can be further improved by 
introducing new algorithms for QRS detection and signal 
quality assessment. 

It should also be noted that in our approach HR 
estimation used by KF was considered as the heart rate at 
each epoch is approximately the same as the next epoch. 
It is possible that more complicated conditions of the HR 
and ABP we may encounter which should use a variety of 
methods to estimate HR and ABP simultaneously. Also 
other parameters such as systolic blood pressure (SBP), 
mean blood pressure (MBP) and diastolic blood pressure 
(DBP) can be utilized to improve the estimation.  
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