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Abstract

This work presents a solution for the Physionet Chal-
lenge 2015 regarding false alarm reduction in ICU. False
alarms can result in alarm fatigue, i.e. reduced respon-
siveness of the ICU personnel to the true alarms due to an
enormous number of false alarms. As a result, it is neces-
sary to effectively suppress the false alarms while ensuring
that the true alarms are not ignored. The challenge data
contains five different types of alarms which are treated
as independent problems in this paper. A separate sub-
routine is used for each alarm which is composed of two
stages, peak detection and alarm verification. This paper
uses a multi-modal peak detection algorithm that uses the
information from all the available signals and combines
the results from several peak detection algorithms to cre-
ate a robust peak detection algorithm. The alarm verifi-
cation stage is alarm dependent, composed of simple deci-
sion criteria or a complicated neural network model. The
proposed approach achieves an overall score of 74.48 for
the real-time event, where only the portions of the signals
prior to the alarm are utilized, and 76.57 for the retrospec-
tive event, where 30 seconds of the signals after the alarm
are used as well.

1. Introduction

Intensive care units (ICU) are arguably the most data
rich environment within any hospital system. These units
are designed to provide care for patients with severe
and life-threatening injuries or illnesses requiring constant
monitoring, specialized equipments and highly trained
doctors and nurses. To obtain a more comprehensive view
of the patho-physiology of each patient in the ICU, they
are typically attached to a multitude of monitoring de-
vices such as electrocardiogram (ECG), pulse-oximeter
(PPG), arterial blood pressure (ABP) catheter, central ve-
nous pressure catheter, ventilators, etc. Each of these de-
vices are sophisticated equipments, many of which have
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built-in alarms to notify care givers when the measured
parameters are observed to be out of what is considered as
normal. However, despite the improvements in such physi-
ological monitoring technologies, their alarm mechanisms
and management have consistently shown points of fail-
ures [1,2].

Issues with alarm management in ICU settings can be
traced back to as early as 1983 when Kerr et. al. pub-
lished about how the increasing number of alarms are cre-
ating confusion in the decision making process for the care
givers [3]. Till date, the sheer number of alarms and their
unreliability continue to increase and thereby negatively
affect the quality of care provided to the ICU patients [4].
One study showed that in a single hospital, nearly 59000
alarms were recorded in a 12 day period of study, majority
of which were either false or ignored [5]. In fact a recent
study in this field demonstrated that nearly 72% to 99% of
all alarms from such physiological monitors are false [6].
Occurrences of such large volumes of monitor alarms per
patient as well as the lack of veracity of these alarms have
created a copiously documented phenomenon knowns as
‘alarm fatigue’ [6,7] where the care-givers attentiveness to
alarms starts diminishing leading to the true alarms being
ignored.

Alarms in ICU based monitors are fundamentally de-
signed to be highly sensitive in nature. This is in order to
avoid missing any occurrence of critical events. However,
such sensitivity is almost always achieved while directly
compromising the specificity of these alarms. The Pphys-
ionet challenge 2015 explores various ways of reducing the
number of false alarms while ensuring that the true alarms
are not suppressed. It considers five different alarms: Ex-
treme Bradycardia (BC) where the heart rate (HR) is lower
than 40bpm for five consecutive beats, Extreme Tachycar-
dia (TC) where HR is higher than 140bpm for 17 consec-
utive beats, Ventricular Tachycardia (VC) where five or
more ventricular beats are present and HR is higher than
100bpm, Ventricular Flutter/Fibrillation (VF) where fibril-
latory, flutter, or oscillatory waveforms are present for a
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Figure 1: The structure of the proposed method.

duration of at least 4 seconds, and Asystole where there is
no QRS for at least 4 seconds.

The proposed method for alarm verification is intro-
duced in the next section.

2. Methods

The verification of each type of alarm can be treated as
an independent problem. Hence, five different subroutines
are proposed for verifying the different types of alarms, all
of which consist of two fundamental steps, peak detection
and alarm verification, shown in Figure 1. After introduc-
ing the pre-processing step, the paper discusses the gen-
eral peak detection algorithm that is used in this work. The
peak detection algorithm is then customized and fine-tuned
for each type of alarm. Some of the subroutines compute
peak quality indices as well. These indices are discussed in
Section 2.3. The Asystole subroutine uses a different peak
detection algorithm which is discussed in Section 2.6. The
proposed method starts with a pro-processing step which
is outlined in the next section.

2.1. Preprocessing

The preprocessing step starts by retrieving the input sig-
nals. The signals from two ECG leads are used in this
work as well as the ABP and PPG signals. The algorithm
first searches for ECG leads II and V and uses any avail-
able leads if these two are not available. All the unavail-
able signals are set to zeros. Only 16 seconds prior to the
alarm are used in this work and the rest of the signals are
discarded. All the signals are re-sampled to 125Hz. The
retrieved signals are then filtered using zero-phased band-
pass Butterworth filters between 0.5Hz and 40Hz for the
ECG signals and between 0.5 and 10Hz for the ABP and
PPG signals.

The data sets for the BC and TC alarms are usually less
noisy compared to the VT and VF alarms. Hence, the BC
and TC signals are normalized by removing the median of
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the signal and dividing it by signal’s 99th percentile minus
the 1st percentile. For the VT and VF signals, the trend
is found and removed using a median filter with a span of
1 second. Then, an initial set of peaks are found using
Matlab’s findpeaks function with MinPeakDistance equal
to 1 second applied to the absolute value of the signals.
The signals are then normalized by dividing them by the
median of the peak heights.

2.2. Peak Detection

The peak detection is performed by polling several dif-
ferent peak detection algorithms for the ECG, ABP and
PPG signals. Some of these algorithms are available in
the literature and others are devised by the authors. First,
the peak detection algorithms for the ECG signals that are
used in this work are introduced. The first one is the sqrs
routine in the Physionet toolbox which implements the al-
gorithm in [8]. The second algorithm is a peak detection
code by Sadeghi et al. that is available on Matlab Central
[9]. Three more algorithms are devised by the authors. The
first uses the absolute value of the derivate of the signal to
find the peaks. It first finds an initial set of peaks using the
findpeaks function in Matlab with MinPeakDistance equal
to 2 seconds. Then, it finds a threshold equal to the me-
dian of the depth of the initial peaks (the average differ-
ence between the height of the peak and the neighboring
troughs) divided by 3. The final set of peaks is found using
findpeaks function with MinPeakDistance equal to 250ms
and MinPeakProminence equal to the threshold. This al-
gorithm is referred to as PF'1. The second algorithm, PF2,
is similar to PF1 but is applied to the ECG signal itself
instead of its derivative. The last algorithm, referred to as
PF3, uses the absolute value of the Stockwell Transform
of the signal and creates a new signal by adding the values
along the frequency dimension. The peaks of this new sig-
nal are found using a method similar to the previous algo-
rithms, except that the threshold is computed by dividing
the average depths by 5 instead of 3.

Some of the algorithms select points that are not criti-
cal, i.e., the derivative is non-zero at the selected points.
As a result, a neighborhood around each selected point
is searched for the critical point with the highest absolute
value to replace the selected point. Moreover, the shal-
low peaks whose depth (average drop from the peak to the
neighboring troughs) is less that one fifth of the 60th per-
centile of all the peak heights are removed.

Two algorithms have been employed to find the peaks in
the ABP signal. The first one uses the wabp routine in the
Physionet toolbox. The second one is similar to the PF1
algorithm. The same two algorithms are used to find the
peaks in the PPG signal as well. For the ABP signal, the
original signal before normalization is used since the wabp
routine takes advantage of the features of the ABP signal



such as systolic and diastolic blood pressures. Moreover,
the PPG signal is scaled between 80 and 120 to resem-
ble an ABP signal before being fed into the wabp routine.
Similar to the peak detection algorithms for the ECG sig-
nals, the peak detection algorithms for the ABP and PPG
signals search a neighborhood around the peaks to find the
critical points with the highest amplitude and replace the
selected points with them. However, the shallow peaks are
not removed here since abnormal beats in VT and VF cases
can lead to ABP and PPG beats that have a lower ampli-
tude compared to the normal beats.

The polling is done by creating an indicator signal using
the peaks that are detected by each algorithm. For each
set of detected peaks, the indicator signal is non-zero in a
100ms neighborhood around each peak and is zero every-
where else. The height of the non-zero sections are set to
1 for ECG signals and 1.5 for the ABP and PPG signals in
the BC/TC Peak Detection subroutine. On the other hand,
the heights of the non-zero sections are determined by the
quality of the peaks, which are discussed in the next sec-
tion, for the VT and VF Peak Detection subroutines.

All the indicator signals for the ECG signals are added
together to create a cumulative ECG indicator signal. The
cumulative ABP and PPG indicator signals are created
similarly. The cross-correlations between the cumulative
indicator signals are used to align the ABP and PPG sig-
nals with the ECG signals. The aligned indicator signals
are then added to create a global indicator signal that is
composed of all the peaks that are detected by a plurality
of peak detection algorithms from all the available signals.
The global indicator signal is then smoothened and thresh-
olded to detect the heart beats. Thresholds of 1.75, 1.5 and
1.2 are used for the global indicator signals for the BC/TC,
VT and VF Peak Detection routines. The BC/TC Peak De-
tection subroutine only uses the sgrs, Sadeghi and PF1 for
ECG peak detection while the VT Peak Detection subrou-
tine uses sgrs, PFI and PF3, and the VF Peak Detection
subroutine uses PF1, PF2 and PF3.

2.3. Assessing Peak Quality

The subroutines for the VT and VF alarms use quality
indices for the detected peaks to create the indicator sig-
nals. The quality of the ECG peaks are computed by creat-
ing a window around each peak with the peak in the center.
The size of the window is determined by fs/ fimq. Where
fs s the sampling rate and f;;,4, is the maximum HR spec-
ified for each type of alarm. For each peak, the absolute
value of the Pearson correlation between its window and
the two neighboring peak windows are computed and the
peak quality is set to be the maximum correlation.

The quality of the ABP peaks is assessed using the code
that was provided by the Challenge. The algorithm first ex-
tracts 12 features from the ABP signal including the pres-
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Figure 2: The typical patterns for the normal and abnormal
beats.

sure values and the duration of systole and diastole, pulse
pressure, etc. Then, it checks if each feature is within the
normal range for that feature. Finally, it computes a qual-
ity index based on the number of features that are outside
their normal range.

The quality of the PPG peaks are determined using a
code that was provided in the sample entry by the Chal-
lenge. It first computes a beat template using all the beats
in the signal. The correlation coefficient between a win-
dow around each peak and the template is considered as
the peak quality.

24. Bradycardia and Tachycardia

After finding the peaks, the decision on whether the
alarm is true or not is made based on the timing of the
peaks. A relaxed criteria is used compared to the defini-
tion of the alarms in order to reduce the false negatives.
For both alarms, the minimum and maximum HR are as-
sumed to be 30bpm and 240bpm, respectively. For the BC
alarm, if the HR is below 50bpm for at least three beats, the
alarm is declared to be true, and vice versa. A HR of higher
than 130bpm for more than 13 beats is considered as true
TC alarm; otherwise, the alarm is designated as false.

2.5. Ventricular Tachycardia and Flut-

ter/Fibrillation

The verification of the VT and VF alarms consist of
two steps, phase wrapping and machine learning. For
phase wrapping, the ECG signals are normalized in a sim-
ilar manner as the peak detection step for the VT and VF
alarms. Next, the mid points between the peaks are found
and each period is defined to start from the mid point be-
fore that peak and end at the mid point after that peak. If
any of the two sides of the period are longer than 1 second,
that side is trimmed down to 1 second. Then, the shorter



side of the period is zero-padded to position the peak in the
middle of the period. The periods for which the amplitude
of the peak is smaller than the median of the period are
inverted to create all-positive peaks. Finally, the periods
are interpolated into 125 samples. The results are equally
sized, normalized, all positive periods for each peak with
the peak in the center. Figure 2 shows the typical shapes
for the normal and abnormal classes. The periods are then
used as instances for machine learning to classify the beats.
We have used a 2-layer neural network (NN) with the
raw periods as input and the type of peak as output. For
the VT alarms, two classes are defined, the normal class
and the ventricular class. Similarly, the VF alarms con-
sist of normal and fibrillatory/flutter classes. The data has
been manually annotated by the authors and the annota-
tions have been provided as class labels. The 250 samples
for the two ECG signals in each row are down-sampled by
a factor of 2. Hence, the input layer for the NN contains
125 nodes and a bias node. The size of the hidden layer
and the type of the neurons are chosen by nested cross-
validation (CV), with 5 validation folds and 5 testing folds.
This led to 150 tangent sigmoid neurons for the VT model
and 50 tangent sigmoid neurons for the VF model in the
hidden layer, plus the bias term. The VT and VF samples
are unbalanced with more instances in the normal class.
Hence, the abnormal beats are replicated five times to re-
duce the number of incorrectly classified abnormal beats.
After classification, the detected peaks are used to verify
the alarms. The decision criteria are relaxed to avoid false
negatives. A VT alarm is declared as true if there are at
least 3 consecutive ventricular beats and the HR is above
80bpm. For the VF alarms, the alarm is verified if there is
fibrillatory/flutter pattern for at least 2 seconds.

2.6.  Asystole

In the presented method, in order to detect Asystole, the
PPG and ABP signals are utilized. Each window of the sig-
nals is processed using the wabp routine to find the peaks.
If the heart rate is found to be either greater than 140 or
lesser than 20 then it is assumed that the window is noisy
and thus not used for further computation. If a distance of
4 seconds or greater is detected between any two consecu-
tive peaks in either of the signals, then the alarm is flagged
as true, and vice versa.

3. Results

The subroutines that are proposed in the previous sec-
tions are applied to the Physionet training dataset (publicly
unavailable) and the results are shown in Table 1. The best
results are obtained for the AS, TC and VF alarms. How-
ever, the largest section of the dataset belongs to the VT
alarms with a TNR of 78%. The relatively high number
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of FN, which weight five times higher, lowers the overall
score. Two overall scores are measured, one for the real-
time event where only the signal prior to the alarm is used
for verification. The retrospective score is measured using
the signals prior to the alarm as well as 30 seconds after.

Table 1: The alarm verification results.

Alarm Type TPR TNR Score
Asystole 94 82  81.76
Bradycardia 77 86  60.15
Tachycardia 98 60  89.92

Ventricular Flutter Fib 100 90 91.38
Ventricular Tachycardia 78 85  70.69

Real-time 89 84 74.48
Retrospective 89 87  76.57
References

[1] Gorges M, Markewitz BA, Westenskow DR. Improving
alarm performance in the medical intensive care unit us-
ing delays and clinical context. Anesthesia Analgesia 2009;
108(5):1546-1552.

[2] Siebig S, Kuhls S, Imhoff M, Gather U, Scholmerich J,
Wrede CE. Intensive care unit alarmshow many do we need?
Critical care medicine 2010;38(2):451-456.

[3] KerrJ, Hayes B. An alarming situation in the intensive ther-
apy unit. Intensive care medicine 1983;9(3):103-104.

[4] Deb S, Claudio D. Alarm fatigue and its influence on staff
performance. IIE Transactions on Healthcare Systems Engi-
neering 2015;5(3):183-196.

[5] for the Advancement of Medical Instrumentation A, et al. A
siren call for action: priority issues from the medical device
alarms summit. Arlington VA Association for the Advance-
ment of Medical Instrumentation 2011;.

[6] Sendelbach S, Funk M. Alarm fatigue: a patient safety con-
cern. AACN advanced critical care 2013;24(4):378-386.

[7] Cvach M. Monitor alarm fatigue: An integrative review.
Biomedical Instrumentation Technology 2012;46(4):268—
2717.

[8] Engelse W, Zeelenberg C. A single scan algorithm for qrs-
detection and feature extraction. Computers in cardiology
1979;6(1979):37-42.

[9] Sedghamiz H. An online algorithm for r,s and t wave detec-
tion. http://www.mathworks.com/matlabcentral/
fileexchange/45404-ecg-q-r-s-wave-online-detector, 2013.

Address for correspondence:

Sardar Ansari

2800 Plymouth Road, Bldg. 10-A109
Ann Arbor, MI 48109
sardara@med.umich.edu





