
Reducing False Arrhythmia Alarms in the ICU by Hilbert QRS Detection 

Nadi Sadr, Jacqueline Huvanandana, Doan Trang Nguyen, Chandan Kalra, 
Alistair McEwan, Philip de Chazal 

School of Electrical and Information Engineering, University of Sydney, Australia 

Abstract 

In this study, we develop algorithms that reduce the 
arrhythmia false alarms in the ICU by processing the four 
signals of Photoplethysmography (PPG), arterial blood 
pressure (ABP), ECG Lead II, and Augmented right arm 
ECG. Our algorithms detect five arrhythmias including 
asystole, extreme bradycardia, extreme tachycardia, 
ventricular tachycardia (VT), and ventricular flutter or 
fibrillation (VF). Real time algorithm is provided.  

Our processing proceeded as follows. Firstly, 
preprocessing was applied to the ECG signals by two 
median filters in order to remove the baseline wander and 
high-frequency noise. Then a Hilbert-transform based 
QRS detector algorithm was used to detect R waves from 
the ECG signals.  Following this, RR intervals were 
calculated from the available ECG signals. Pulse onset 
points of the pulsatile signals (PPG and ABP) were also 
detected and the signal quality index (SQI) of the four 
signals was measured. The ECG based RR intervals were 
combined with the pulsatile signal based RR intervals 
using the algorithms provided by the CinC2015 
competition organizers. The combined RR intervals were 
thresholded at the clinically important values for the five 
arrhythmias. Template matching was used to detect 
ventricular tachycardia (VT) and power spectrum of ECG 
signals and identifying the VF frequency components 
employed to investigate ventricular fibrillation.  

Our highest overall result was a 98% True Positive 
Rate (TPR), 66% True Negative Rate (TNR) with a score 
of 74.03% for the retrospective algorithm. For the real-
time algorithm, we achieved a 98% TPR, 65% TNR and a 
score of 69.92%.  

1. Introduction

False alarms in medical applications are warning 
alerts from monitoring systems which have not originated 
from clinical conditions [1] and they may result in 
disturbing the patients in an intensive care unit (ICU) 
setting and the attending clinical staff [2]. Alarms can be 
categorized into technically correct or false categories. As 
alarms could be technically correct but clinically 
irrelevant (such as improper threshold), they can be 

further categorised into clinically relevant and not 
relevant categories [3]. Over 80% of alarms in ICUs are 
false alarms [4]. These alarms were basically developed 
to detect the life-threatening conditions and save the 
patient’s life. These false alarms would distort and 
interrupt treatments and care systems and may disrupt the 
monitoring in severe situations [3]. The most dangerous 
consequence of false alarms is the desensitisation of 
clinical staff to the alarms and their consequent ignoring 
or delayed reaction to true alarms [2]. This study aims to 
detect the severe alarm situations comprised of 
ventricular tachycardia (VT), ventricular fibrillation or 
flutter (VF), tachycardia, bradycardia and asystole. In this 
paper, we consider different signal processing methods to 
minimise the false alarms [5].  

2. Input data

The dataset comprised of 750 recordings as training 
set and 500 hidden recordings as test set. There are four 
signals including two ECG leads II and aVr and one or 
both pulsatile waveforms of photoplethysmogram (PPG) 
and arterial blood pressure (ABP). There are 1250 
arrhythmia alarms in the dataset randomly chosen from 
four hospitals in US and Europe. The experts labelled the 
alarms as “true”, “false”, or “impossible to tell” after 
reviewing the alarms. Those records with the labels 
agreed by the majority of annotators were chosen as the 
input data.  

There is at least five minutes interval between alarms. 
The alarm for each record was at the fifth minute from the 
beginning of the record. The alarms originated from an 
arrhythmia event happening within ten seconds of the 
alarm. Each record has been labelled with one alarm and 
any other arrhythmia during the five minutes prior to the 
alarm was not annotated. In order to diminish transferring 
an error from one alarm to the next alarm, the repeated 
alarms and information from earlier alarms are not used. 
The signals were resampled to 250 Hz, 12 bit. Moreover, 
FIR band pass filter of 0.05 to 40 Hz and common notch 
filters were implemented to eliminate noise although 
pacemaker and other noise artefacts still are visible in 
ECG signals. The pulsatile signals also may have been 
damaged by movement artefacts, sensor disconnection, 
line flush, coagulation and other noises.   
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3. ECG signals

Each recording contains lead II and/or lead aVr. There 
are 33 recordings in the training set containing zero or 
missing values in the majority of the ECG signals. 

Therefore, preprocessing was the first stage of signal 
processing before implementing ECG recordings. Signal 
noise was removed with filters. Next, QRS complexes 
were detected and then followed by QRS revision, RR-
interval calculation, and feature extraction. 

ECG signals are effective to detect life-threatening 
situations such as VT, VF, tachycardia, and bradycardia. 

3.1. Signal preprocessing 

Preprocessing has been applied to the ECG recordings 
as the first stage of data processing as shown in Fig. 1. 
This stage provides noise removal and filtering. Then, 
QRS detection, QRS revision and cleaning, and RR-
interval computation were employed.

Baseline wander noise was removed by two median 
filters with 200-ms and 600-ms width and high frequency 
noise filtering was applied [6].  

Then, the ECG signals with a large number of zeros 
and missing values were removed from the input signals. 
A number of features were used for signal quality 
investigation. The ECG signals with zero or missing 
values were detected and signal integration was used for 
the intervals with missing values. 

3.2.  QRS detection 

After applying preprocessing to the ECG signals, QRS 
points were detected by a Hilbert transform based 

detection algorithm. A visual check of the resulting QRS 
detections revealed that the QRS detector identified 
almost all QRS detections except for the QRS points after 
missing values occurring in the ECG signals.  

To solve this issue, the missing values were detected 
and replaced with zero values. With this step in place, the 
algorithm detected the QRS points after the missing 
values successfully. After collecting the QRS detection 
points, the replaced zeros were removed for those 
intervals. Finally, the RR-intervals were calculated by 
determining the time difference between adjacent QRS 
detections. 

3.3. ECG SQI 

Signal quality index (SQI) of the ECG was used to 
evaluate the quality of signal before utilizing the signal. 
Three ECG measures were checked for SQI. First, 
maximum RR-interval for each signal was calculated. 
The maximum RR-interval was compared to the threshold 
of six seconds. Thus, the ECG signal was used for false 
alarm detection, if the maximum RR-interval was 
between zero and six seconds. Second, the standard 
deviation of the ECG signal in the segment including the 
alarm was measured and compared to another threshold. 
The optimum threshold for standard deviation was chosen 
to be 0.05. Third, the ECG signal was implemented if the 
minimum available beats in the signal were 10 beats. 

4. Pulsatile signals

One or both ABP and PPG signals were available for 
the recordings and were used to detect false alarms. 

4.1. ABP signal 

Three PhysioNet open-source algorithms were used to 
process the arterial blood pressure (ABP). The ‘wabp’ 
algorithm was applied to ABP signal to detect the onset 
points of the pulses in the signal [7]. This algorithm is 
based on the length transform [8]. The ‘abpfeature’ 
algorithm was then applied to extract features from ABP 
signal such as systolic and diastolic pressure, systolic 
area, and mean pressure at each detected pulse. The 
‘jSQI’ algorithm was implemented to investigate the 
signal quality of each beat of ABP signal. It is based on 
removing the features and onset points that are not 
physiologically meaningful. Finally, the RR-intervals 
were calculated as the difference of the onset points of the 
pulses in the signal. 

4.2. PPG signal 

Three PhysioNet open-source algorithms were used to 
process the photoplethysmogram (PPG) signal. The 

Figure 1. A sample ECG II signal and the result from
applying preprocessing.  
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‘quantile’ algorithm was applied to partition the signal 
into three quantiles, (0.05, 0.5, 0.95). The ‘wabp’ was 
used for onset point detection and was applied to the 
subtraction of third quantile and first quantile. Then, the 
RR-intervals were calculated from the onset points. The 
‘ppgSQI’ algorithm was used to estimate the signal 
quality index based on beat template correlation. 

5. Decision making

The input data was segmented according to the alarm 
position. The aim was to detect the false alarms in a real-
time manner and without any information after the alarm. 
The alarms occurred at the fifth minute from the start of 
the signal. To ensure that the data segment contained the 
alarm, the segment was assigned to 16 seconds before the 
alarm up to the alarm. Then, the beats of all of the 
available signals for each segment were found. Finally, 
the heart rate was measured from each available signal 
and the maximum RR-intervals were calculated. 

5.1.  Signal integration 

When various physiological signals are used, 
integrating methods could enhance the performance. 
Signal fusion was the main aspect of the previous 
Computing in Cardiology Challenge in 2014 [9]. There 
were different methods employed including SQI based 
method [9] which was modified for this algorithm. 

In this study, ECG signals were firstly employed as the 
most reliable signal. In fact, ECG signals were available 
for most of the recordings in train set and the Hilbert QRS 
detector resulted in reliable QRS complexes. The only 
issue was caused by the intervals with missing values. 

In this approach, the mean value of RR intervals of 
each available signal was measured. The median of the 
RR-interval mean values was calculated and assigned as a 
robust RR-interval. Then, the algorithm started with 
analysing the ECG II signal. If an RR interval was greater 
than twice the robust RR-interval, the algorithm switched 
to the ECG aVr signal, if available. The same algorithm 
repeated for the second ECG signal. If it wasn’t available, 
the comparison takes place for the pulsatile signals. If the 
algorithm detected the same RR-interval for all of the 
signals, the RR-interval is accepted as a correct RR-
interval.  Otherwise, it was assigned as not 
physiologically plausible and was replaced by the 
minimum RR-interval derived from the other available 
signals. 

5.2. Asystole 

Asystole was defined as no heart beat for at least four 
seconds. Therefore, the minimum Asystole threshold was 

set to four seconds with a tolerance of 0.5. First, the 
algorithm checked if the ECG II was available and if the 
signal quality was adequate, the maximum RR-interval 
was compared to the asystole threshold. If it was greater, 
then the alarm was set to False. If the ECG II was not 
available or the signal quality was not in the proper range, 
then the algorithm checked the same for ECG aVr.  

Then, the algorithm will go through ABP signal and 
then PPG signal to check the maximum RR-interval 
compared to the threshold. 

5.3. Bradycardia 

Bradycardia was defined by the heart rates of less than 
40 bpm for five consecutive beats. Therefore, minimum 
heart rate for each five beats through the segment was 
measured and if it passed this threshold, the alarm was set 
to false. The SQI threshold for pulsatile signals set to 0.9. 

5.4. Tachycardia 

Tachycardia occurs when heart rate elevates to more 
than 140 bpm for 17 consecutive beats. The algorithm 
starts with ECG II. If the SQI of ECG signal was in the 
appropriate range, the heart rate values were set to the 
values of ECG heart rate. Then, the algorithm repeated 
the same approach for the other signals and thresholding 
was applied. 

5.5. Ventricular tachycardia 

Ventricular tachycardia (VT) defined as five or more 
ventricular beats with heart rate higher than 100 bpm. The 
approach for detecting Ventricular Tachycardia (VT) was 
based on a template subtraction process, adopting the first 
waveform in the series as the template against which 
subsequent waveforms would be compared. A presence 
of greater or equal to four 'irregular' waveforms that 
varied on average from the template by more than the 
standard deviation constituted the detection of VT. 

5.6. Ventricular flutter or fibrillation 

Ventricular Flutter (VF) was assumed to be 
fibrillatory, flutter, or oscillatory waveform for at least 
four seconds. To detect VF, firstly the SQI of the ECG 
signals and pulsatile signals were evaluated and the 
adequate beats are used for heart rate. Then, the spectrum 
of the heart rate was calculated using Discrete Fourier 
transform (DFT) and its amplitude was used to measure 
power of the signal. If the maximum heart rate is less than 
VF maximum threshold, the alarm is true. Otherwise, if it 
is greater than minimum VF threshold, the alarm set to 
false.  

1175



By observing the six positive VF classes in the 
training set with the energy in a frequency range of 10-
20Hz which was lower in non-VF cases, power spectrum 
was chosen as a proper feature. If the power of the ECG 
spectrum was less than VF power threshold of 100, the 
alarm is labeled as true. If the heart rate was consistently 
less than 150 bpm, then it was "unlikely" to be irregular 
and wasn’t detected as VF. Moreover, if heart rate was 
above 290 bpm, it was flagged as "irregular or VF". The 
VF maximum heart rate threshold was set to 150, 
minimum threshold assumed to be 300 and minimum VF 
beats needed for evaluation was considered to be 10.  

6. Results and discussion

Our results from training set are shown in Table 1. 
The highest scores of train set obtained in tachycardia of 
about 97% and 87% for Asystole and 75% for 
bradycardia. The average score was 79%. The results for 
test set are shown in Table 2 with highest score of 99% 
for Tachycardia, 82% for Asystole, and 71% for 
bradycardia. The real-time score was 69.9% and 
retrospective score was 74%. 

Our algorithm for detecting false alarms for 
tachycardia and asystole is working appropriately and it is 
working well for bradycardia and VF. Further work is 
required to improve the detection of VF and VT. Other 
signal fusion techniques including modification of delay 
between QRS points of ABP and ECG signals may  

enhance the results. Also the threshold based decision 
algorithms considered in this study could be replaced by 
machine learning algorithms (e.g support vector 
machines) and may improve the algorithm performance. 
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Table 1. Results of scores and true positive rates and true negative rate from training set. 

Training set results from final submission

TP FP FN TN TPR (%) TNR(%) Score(%) 

Asystole: 0.164 0.057 0.016 0.762 91.11 93.04 87.11 
Bradycardia: 0.517 0.247 0 0.236 100 48.86 75.3 
Tachycardia: 0.936 0.043 0 0.021 100 32.81 95.7 
VentFlutter: 0.103 0.19 0 0.707 100 78.82 81.0 
VentTach: 0.246 0.361 0.015 0.378 94.25 51.15 58.87 

Average: 0.393 0.18 0.006 0.421 98.50 70.05 79.49 
Gross: 0.383 0.225 0.009 0.383 97.70 62.99 73.94 

Table 2. Results of final submission from test set 

TPR TNR Score

Asystole 78% 93% 82.46% 
Bradycardia 100% 52% 71.13% 
Tachycardia 100% 80% 99.10% 
VF 100% 59% 65.52%
VT 91% 55% 58.07%

Real-time 95% 65% 69.92% 
Retrospective 98% 66% 74.03% 
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