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Abstract 

Due to the so-called “crying wolf” effect, frequent 
false cardiac arrhythmia alarms have been shown to 
diminish staff attentiveness and thus reduce the quality of 
care patients receive in the ICU.  

The PhysioNet/Computing in Cardiology 2015 
Challenge seeks to improve patient care by decreasing 
the number of these false cardiac arrhythmia alarms. 
Using a training set of 750 multi-parameter recordings 
organized by type of arrhythmia alarm, we developed a 
decision tree for each arrhythmia category. We derived 
the features utilized in the decision tree from the arterial 
blood pressure (ABP) waveform and the 
photoplethysmogram (PPG).   

For Phase I of the challenge, our score for the real-
time test set = 57.64 and retrospective test set = 61.15, 
resulting in an overall score of 59.39. For Phase II, our 
score for the real-time test set = 65.19 and retrospective 
test set = 72.19.  In conclusion, decision trees have been 
shown to generate reasonable results in reducing false 
cardiac arrhythmia alarms; future work will involve more 
sophisticated machine learning algorithms to improve 
performance. 

1. Introduction

The objective of the 2015 Computing in Cardiology / 
PhysioNet Challenge is to develop algorithms to reduce 
the frequency of false cardiac arrhythmia alarms in the 
Intensive Care Unit (ICU) [1,2]. Research has shown the 
quality of care patients receive in the ICU is adversely 
affected by frequent false alarms due to reduced staff 
attentiveness [3-4]. The ICU, as a result, tends to be a 
very noisy environment, which can be bothersome to 
patients and distracting to caregivers [5-6]. The number 
of false alarms tends to be elevated in the ICU since the 
alarm detection sensitivity is set sufficiently high so as to 
not inadvertently miss any true cardiac arrhythmia 
alarms, which as a side effect also produces a high 
number of false alarms [7]. Consequently, a number of 
approaches in artificial intelligence have been taken to 

reduce false alarms, including rule-based expert systems, 
neural networks, fuzzy logic, support vector machines, 
relevance vector machines, and Bayesian networks 
[6,8,9,10], but further work is still necessary to provide an 
accurate, robust, and clinically-relevant solution.  

The Challenge is divided into two events [2]. The 
objective of event 1 is to reduce the incidence of false 
alarms while detecting true alarms by only using data 
prior to the sounding of the alarm. Each of these records 
is exactly five minutes in length. The objective of event 2 
is the same as event 1, except that data from up to 30 
seconds after the alarm may be utilized. Furthermore, the 
Challenge consisted of two phases, the Unofficial phase 
which limited participants to a maximum of five 
submissions and the Official phase which limited 
participants to a maximum of ten submissions. 

2. Materials & methods

2.1. Data 

A total of 1250 recordings were obtained from four 
hospitals in the USA and Europe, each containing an 
arrhythmia alarm [2]. The training set consisted of 750 
multi-parameter recordings organized by alarm type. 
There were five types of critical arrhythmias included in 
the dataset: asystole, extreme bradycardia, extreme 
tachycardia, ventricular tachycardia, and ventricular 
flutter/fibrillation. The test set, consisting of 500 
recordings, was hidden from participants for the duration 
of the Challenge. Experts reviewed all of the recordings 
and determined which alarms were true alarms and which 
were false alarms. These designations were made 
available to Challenge participants for the training set 
only.   

2.2. Preprocessing 

The arterial blood pressure (ABP) and 
photoplethysmogram (PPG) signals were obtained and 
resampled to 125 Hz for each patient, using scripts 
provided by the Challenge organizers [2]. Note that both 
ABP and PPG were not available for all patients, but all 
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patients had at least one of the two signals recorded. 
Signals were filtered with a finite impulse response 
bandpass filter (0.05-40Hz) as well as with a notch filter 
to reject noise.  Two electrocardiogram (ECG) leads were 
also available, but for this work, we limited our analysis 
to the ABP and PPG only. Examples of sample signals 
available for analysis for asystole, ventricular 
flutter/fibrillation, and ventricular tachycardia alarms are 
shown in Figures 1-3. 

2.3. Machine learning 

In searching for an appropriate machine learning 
algorithm to approach the Challenge, we investigated 
several different algorithms. Of these algorithms, we 
selected decision trees for several reasons.  Decision trees 
are a frequently utilized technique for inductive inference 
[11]. One of their main strengths is robustness to noise in 
the data. Furthermore, since learned decision trees may be 
rewritten as if-else statements, the computational 
complexity is minimal once realized in hardware in an 
actual system. Therefore, we wanted to determine if 
sufficiently high accuracy in correctly identifying cardiac 
arrhythmia alarms could be achieved with a 
computationally simple solution.  

We developed a decision tree for each arrhythmia 
category, which we combined with domain knowledge to 
produce a set of if/else statements. The attributes obtained 
from the sample set included the following for both the 
ABP and PPG [2]: 

1. Signal quality index
2. High heart rate of seventeen sequential beats
3. Low heart rate of five sequential beats
4. Maximum heart rate
5. Maximum RR-interval
6. Median RR-interval

Separate decision trees were trained using the ABP and 
PPG, since we observed that the attributes varied based 
upon the signal type. The specific tests derived from the 
decision tree will be made available as our submission on 
the PhysioNet Challenge webpage. 

3. Results

Table 1 shows the best entry for the Unofficial Phase. 
Scores are calculated according to the following equation, 
provided by the Challenge organizers [2]:  

Score = (TP + TN) / (TP + TN + FP + 5*FN) 

where TP = true positive, TN = true negative, FP = false 
positive, and FN = false negative.  

In order to improve the results from the Unofficial 
Phase, we iteratively pruned the decision tree and added 

domain knowledge about the characteristics of the 
arrhythmias. The best results from the Official Phase are 
shown in Table 2. 

Table 1: Results on the test set from the best entry in the 
Unofficial Phase. 

TPR TNR Score 
Asystole  50% 89% 68.59 
Bradycardia 90% 76% 69.91
Tachycardia 97% 60% 86.18
Ventricular Flutter Fib 56% 88% 64.86 
Ventricular Tachycardia 57% 62% 44.94 
Real-time 79% 72% 58.86
Retrospective 81% 75% 61.15

Table 2: Results on the test set from the best entry in the 
Official Phase. 

TPR TNR Score 
Asystole  72% 88% 76.57 
Bradycardia 95% 90% 84.76
Tachycardia 97% 60% 86.18
Ventricular Flutter Fib 89% 69% 67.74 
Ventricular Tachycardia 49% 87% 55.22 
Real-time 79% 84% 65.19
Retrospective 84% 89% 72.19

4. Discussion

Supervised machine learning techniques are effective 
at predicting future events, given a representative sample 
set. While the decision tree performed reasonably well for 
the test set, it may not be ideal for all patients since it is 
based on hardcoded parameters. A more robust approach 
would be to detect changes on a per-patient basis rather 
than over a patient population [12]; however, this would 
require a much longer recording than was provided for 
the purposes of the Challenge.   

The highest scores in the test set were achieved on 
Bradycardia and Tachycardia, with scores of 84.76 and 
86.18, respectively. This is likely due to the 
straightforward nature of detecting an elevated or 
depressed heart rate rather than an additional change in 
rhythm. Ventricular tachycardia proved most difficult of 
the arrhythmias to accurately classify using the decision 
tree method, which may have resulted from overtraining. 
Attempts to prune the tree yielded improvements in 
performance on the test set, but further work is necessary 
to create a more generalized tree that performs better on 
the test set. 

Alternative machine learning techniques will be 
investigated in future work to determine if better 
performance may be obtained within the constraints of 
the Challenge design. These methods will likely include 
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neural networks, fuzzy logic, and support vector 
machines. 
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Figure 1: Example of signals containing true asystole alarm 10 seconds prior to alarm (record a145) 
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Figure 2: Example of signals containing true ventricular flutter / fibrillation alarm 10 seconds prior to alarm (record f352) 

Figure 3: Example of signals containing true ventricular tachycardia alarm 10 seconds prior to alarm (record v619) 
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