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Abstract 

We began using the same variables as SAPS-1 score, 
adding the rest of variables one by one as recommended 
by physicians, to observe whether the SVM classification 
improves. These variables include: Age, HR, SysABP, 
NISysABP, Temp, RespRate, MechVent, Urine, BUN, 
HCT, WBC, Glucose, K, Na, HCO3, GCS, and other 
variables that were added for phase 1: DiasABP, 
NIDiasABP, Cholesterol, Creatinine, and SaO2. We 
found a 6.1% error in the Set-A files due to the absence of 
measures such as: RespRate, Temp, and age. To solve for 
these errors on phase 1 we chose to input values within 
the normal range for these physiological variables. We 
calculated: mean, standard deviation, and range of 
variation (max and min) for each one of the physiological 
variables. These values were placed in nodes 
corresponding to an index and a value of the variable, 
which were escalated between 0 and 1. We created a 
matrix where the columns corresponded to: means and 
standard deviations of the input variables, and rows 
corresponded to the individual patient’s records. We 
decided to use SVM. Five SVM machines were tested and 
scored. To conclude, we demonstrate the applicability of 
SVM for predicting mortality of ICU patients with a final 
score using set-B of 0.350352 for event 1. 

 
1. Introduction 

Risk adjustment systems have been used for more than 
20 years in order to predict mortality of Intensive Care 
Units (ICU); The researchers have developed various 
methods for scoring: “Acute Physiology and Chronic 
Health Evaluation” (APACHE IV) [1], Simplified Acute 
Physiology Score (SAPS III) [2], and Mortality 
Probability Model (MPM II), [3]. For example, we 
describe the APACHE IV score developed to improve the 
accuracy of the APACHE I method, which aims to 
predict mortality in critically ill patients and to evaluate 
changes in accuracy relative to APACHE I. For this 
study, they considered a total of 131,610 patients 
admitted to ICU during years 2002 and 2003 of which 

110,558 met the inclusion criteria. They evaluated 104 
intensive care units belonging to 45 hospitals where 
APACHE III was installed. Zimmerman et al. [1] 
recalculated the predictions using APACHE IV and 
obtained better discrimination and calibration, which 
ought to be used for reference at the ICU's of U.S. We 
noted that a simplified version of the computerized 
APACHE system is used in the ICU's of Venezuela. 

Lack of proper calibration was observed in subgroups 
of patients, in most cases. It was often found an 
underestimation of mortality in low-risk patients and an 
overestimation of mortality in high-risk patients. It is 
awkward to explain how a patient with a critical state of 
physiological variables has survived against his 
prediction of mortality. This subject is object of continues 
research, in view to propose further new equations to 
solve for this mortality model. 

The Physionet organization launched the challenge 
2012 [4] to the world community to address the problem 
of Predicting Mortality of ICU Patients: thus, The 
Physionet/Computing in Cardiology Challenge 2012.  
The results are now evaluated by an external and 
impartial team. It tests each program sent to the website 
over a series of unknown patients. For this challenge 
12,000 patients were pooled as three sets of 4,000 
patients, called set-A, set-B, and set-C. Each researcher 
received the set-A with the corresponding results, the 
Outcomes-a.txt file. Each researcher or group of 
researchers developed a software program to calculate 
two results: 1) two classes as: 0 = survivor, 1 = died in-
hospital, and 2) The probability of risk of death in-
hospital. 

We have developed a new method based on Support 
Vector Machines for calculating Predicting Mortality of 
ICU, described next. 

 
2. Method 

2.1. Data preprocessing 

To adjust the data of the 42 variables that are meant to 
be interpreted by the Support Vector Machine, we 
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decided to use the first order statistics as the mean and the 
standard deviation as input vectors for SVM. The 
variables initially chosen were the same as those used by 
the SAPS-I Software. This preprocessing method resolves 
most laboratory variables even if it is lacking on two 
issues: 1) The physiological variables such as HR, 
RespRate, Temp, Urine, and Glasgow index are time 
series that frequently and regularly does vary during 
patient's stay in the hospital. 2) Most patients’ records 
lack physiological variables or laboratory tests. 

 
Table 1. Ranges of physiological variables. 

Variable Min Max Input 
x  Units 

SAPS-I 2 32   
Age 16 90  years 
HR 0 135.54 70 bpm 

SysABP 0 181.72 105 mmHg 
NISysABP 0 211 105 mmHg 

Temp 30.08 38.84 37 ºC 
RespRate 0 35.09 10 bpm 
MechVent 0 1 0 Boolean 

Urine 0 760 0 mL 
BUN 3 143 20 mg/dL 
HCT 17.63 50.6 32.5 % 
WBC 0.1 137.23 10.3 cells/nL 

Glucose 47 404.28 120 mg/dL 
K 2.98 6.51 4.5 mEq/L 
Na 111.5 164.53 138 mEq/L 

HCO3 9.77 47 26 mmol/L 
GCS 3 15 15 3-15 

NIDiasABP 0 97.40 60 mmHg 
Cholesterol 84 330 150 mg/dL 
Creatinine 0.2 12.95 0.95 mg/dL 

SaO2 74 100 89 % 
Albumin 0 4.6 0 g/dL 
 
The first problem was solved by calculating the 

Fourier descriptors of the time series: HR, GCS, 
RespRate, Temp, and Urine using the following 
equations. Let ( ) ( ) ( )njynxnu += . We can calculate the 
Fourier descriptors using the following equation: 
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The first Fourier descriptor matches with the mean 

value of the signal. The second problem was solved by 
introducing the normal values for the mean and zero 
value for the standard deviation. These values were 
calculated as minimum, maximum, mean, and standard 
deviation of all physiological variables used. Table I 
shows the ranges of variation of variables after the 
evaluation of 4,000 patients of set-A. The third column 
represents the input value. 

 
2.2. Support vector machines 

The SVM by Vapnik [5], is the appropriate learning 
machine, that minimized the classification error while 
best finding the hyper-plane of maximum margin that 
separated the two classes in the featured space. These two 
classes corresponded as: 0 = survivor or 1=died, in-
hospital. The probability risk is calculated using the 
Gaussian distribution that derives from the distance of 
classifier to the margin that separates the two classes. 

Given a set of points in the input space { } nℜ⊂ix  
li ,...,1=  and a function ii y→xΨ :  { }1,1−∈iy  which 

assigns to the points one of two possible values. Vapnik 
[5] proposed projecting the problem to another space 
(feature space) using a transformation mℜ→ℜΦ n: . In 
the featured space these classes are linearly separable by a 
hyperplane of maximum margin. This proposal is 
presented in figure 1, and the optimization problem is 
defined by the following equations. 
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Figure 1. Points and hyperplane in the feature space. 

 
Figure 1 is considered a planar function (distance 

function) in the featured space. This function is extending 
in the feature space and it takes zero value over the 
hyperplane of maximum separation. It can assign a value 
of +1 to distance function over the nearest points to the 
optimum hyperplane, which we call border vectors. 
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Vectors can also be allowed a distance function iξ−1 , 
which we called outliers. The remaining vectors behind 
the two planes of distance 1 are called interior points. The 
variable w (gradient of the distance function) adjusts to 
the smoothness of the function. A minimum value of w  
gives the maximum smoothness, and a maximum 
separation between the two classes, since the real distance 
between the two planes of distance function 1 and -1 is 

w2 . Equation (5) expresses all the points which are 
projected behind the planes of distance 1 except the 
border vectors and the outliers. Equation (4) presents a 
multi-objective minimization problem that involves the 
magnitude of w (coefficient of smoothness or gradient) 
and the sum of the errors. 

Equations (7) - (9) provide the dual problem from the 
Lagrangian. Equation (7) shows the term ( )ji yxK  , , that 
represents the scalar product in the featured space. 
Equation (10) represents the distance function in the 
feature space, but it can also be plotted in the input space. 
This is the decision function of the classifier. The zero 
level surface of this function will be used to solve the 
modeling problem. 
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2.3. Training scheme of SVM 

In this project, we used the LIBSVM developed on 
C++ language by Chih-Chung Chang and Chih-Jen Lin 
[6]. The version 3.12 of this Software is available on their 
website [6]. For training, we read 4000 files from the set-
A. 1000 of these files were chosen for training and 3000 
of them were chosen for testing. Figure 2 shows the 
scheme used by Support Vector Machines (SVM).. This 
scheme includes the following steps: 1) To read the 
problem and its pre-processing as explained in the 
previous section. 2) To scale the vectors between 0 and 1, 
in order to standardize the physiological variables. 3) The 
final parameters were selected using a manual process of 
trial and error. The final parameters were: 180.0=ν , 

0.2=γ , 58.0=ε . 4) We calculated the SVM model and 
the file of characteristics of physiological variables; these 
files were distributed with the software package for 
testing set-B. 5) The test was performed in two ways: a) 
using the remaining 3000 patients, and b) sending the 
software through the Website where PhysioNet society 
procures test making, on the set-B. 6) The test set was 

scaled. 7) It obtained the prediction results for these tests 
files using the model obtained during the training phase. 

 

 
Figure 2. Training and testing scheme associated with 

Support Vector Machine. 
 
3. Results 

The results were evaluated using two score tests: Event 
1 defined as the minimum between the Sensitivity (Se) 
and positive predictivity (+P) and event 2 based on the 
Hosmer-Lemeshow statistic. Unofficial results for set-A 
and official results for set-B are: 

 
Table 2. Phase I Results of Challenge 2012. 

Set-A Entry 1 Entry 2 Entry 3 
Event 1 0.709386 0.779783 0.815884 
Event 2 991.398 1078.99 1055.77 
Set-B Entry 1 Entry 2 Entry 3 

Event 1 0.260563 0.278169 0.304577 
Event 2 545.662 530.001 659.469 

 
Table 3. Phase II Results of Challenge 2012. 

Set-A Entry 1 Entry 2 Entry 3 Entry 4 
Event 1 0.796029 0.853791 0.487365 0.530686 
Event 2 38.912 38.912 38.912 38.180 
Set-B Entry 1 Entry 2 Entry 3 Entry 4 

Event 1 0.274648 0.297535 0.332746 0.350352 
Event 2 35.147 35.147 35.147 35.147 
 
Figure 3 shows the user interface of our program. This 

interface was created with the objective that the physician 
can select the most important variables for detecting the 
mortality risk in the ICU. This interface also allows the 
engineer the selection: 1) the best parameters of support 
vector machine, 2) the random selection of a training set, 
3) the training, in order to obtain the model, and 4) the 
test with the remaining set-A patients.  
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Figure 3. User interface to select the variables and parameters of 

the best SVM machine. This is designed by authors. 
 

Figure 4 depicts the graph corresponding to the 
calculation of Hosmer - Lemeshow statistics. It was 
evaluated for each patient on set-A where we obtained a 
score of 0.530686 for event 1 and 38.180 for event 2. On 
this graph the number of deaths observed of ICU match 
with the number of deaths predicted by our software. A 
Small change can be seen at the curves around 0.2 when 
the prediction probability becomes a higher. 
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Figure 4. Calcule of Hosmer – Lemeshow statistics for set-A of 

the final Entry.  
 
4. Conclusions 

We observed an over-fitting of SVM to set-A because 
the score to event 1 is 0.8158 while the same evaluation 
using set-B is 0.3045. For phase 2 we are set to improve 
the training strategy of SVM; separating set-A by a 
random pattern, in order to correct over-fitting of SVM, 
and including different variables and scores. 

For Phase II, 1000 patients were selected for training 
and 3000 unknown patients for testing set-A. The system 
was improved, and we reduce the over-fitting of SVM 
machine. Our results show that the final score for event 1 
is 0.530686. And the final score with set-B testing by 
PhysioNet society is 0.350352. It demonstrated that the 
jump between the set-A of training set and testing with 
set-B was significantly reduced. Finally our last software 
“entry 4” of Phase II was tested with the set-C obtaining a 
score of 0.3333. This shows we needed a continues  
research in order to improve the prediction of mortality of 
ICU. 
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