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Abstract 

The aim of this study was to develop a new algorithm 
to predict individual patient mortality with improved 
accuracy with respect to established methods from data 
collected over the first 48 hours of admission to the 
Intensive Care Unit. 

A binary classifier was developed to participate in 
Event 1 of the PhysioNet/Computing in Cardiology 
Challenge 2012. The algorithm development was 
undertaken using only posterior knowledge from the 
training dataset (Set-A), containing 41 demographic and 
clinical variables from 4000 ICU patients.  

For each variable a feature was defined as the average 
(across all available measurements of the given variable) 
likelihood of being part of the “survivors” group.   

To select features with highest discrimination ability 
(“survivors” vs. “non-survivors”), a forward sequential 
selection criterion with logistic cost function was adopted 
and repeated for cross-validation on N (=10) “leave M-
out” (M=50%) random partitions of Set-A. Features that 
were selected in more than one partition were considered 
(#Feat = 32). A logistic regression model was used for 
classification. The score was defined as the lowest 
between sensitivity and positive predictive value in 
classification. 

The proposed method scored 54.9% on Set-A and 
44.0% on the test set (Set-B), outperforming the 
established method SAPS-I (29.6% on Set-A, 31.7% on 
Set-B). 

 
 
 

1. Introduction 

The need to compare the efficacy of intervention and 
treatment in Intensive Care Unit (ICU) populations has 
led over the past three decades to the development of 
methods for prediction of mortality rates [1]. Controlling 
for differences in severity of illness as well as 

demographic factors (such as age, gender, ethnicity) and 
clinical variables represents a key factor in the prediction 
process [1,2]. This topic was the objective of the 
Physionet Challenge 2012 [1]. 

One of the first exhaustive studies on this topic dates 
back to 1981 when the Acute Physiology and Chronic 
Health Evaluation (APACHE) was proposed as a tool for 
ICU outcome prediction [3]. This method utilised 34 
physiological measurements recorded during the first 32 
hours from admission to ICU. A value ranging from 0 to 
4 was assigned to each variable according to its degree of 
abnormality, and the final APACHE score was the sum of 
weights assigned to each recorded measurement. Also a 
pre-admission health status was considered for the final 
outcome prediction. Further assessments highlighted the 
unavailability in many practical cases of one or more of 
those 34 physiological variables and that the assumption 
of normal values for these missing data led to biased 
results. Subsequent studies focused on selecting a suitable 
subset of the original variables which could be routinely 
available [2,4-11]. In particular, the Simplified Acute 
Physiology Score (SAPS) I proposed a set of 13 
physiological variables including age as an important 
predictor [2]. The study which led to the APACHE II 
system pointed out the importance of combining the 
severity classification with precise clinical diagnosis [5]. 
It showed that patients with the same severity score had 
different likelihood of ICU survival depending on the 
type of ICU in which they were hospitalised and the 
disease diagnosed. A worldwide study proved that the 
accuracy of the same method varied between geographic 
areas, probably due to the presence of different conditions 
and availability of different therapies in each area [9,10]. 
In spite of the various methodologies in the literature, the 
accuracy of these predictive models is subject to 
continuous revision because of the onset of new 
conditions and development of new therapies. For 
example, studies using APACHE III [6], SAPS II [8], and 
mortality probability models [7] within independent ICUs 
reported a predicted mortality that was significantly 
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different from the observed [12,13]. Hence these models 
need to be periodically re-evaluated or replaced by new, 
more adequate approaches. 

The aim of this study was to develop a new algorithm 
to predict individual patient mortality with improved 
accuracy with respect to an established method (SAPS-I 
[2]) from data collected over the first 48 hours of 
admission to the ICU (Physionet Challenge, Event I).  

 
2. Methods 

2.1. Datasets 

A training set (Set-A) containing 4000 recordings from 
the first 48 hours of patients’ admission to the ICU was 
made available including the outcome for each recording 
(“survivor” vs. “non-survivor”). Two test sets (Set-B, Set-
C) of 4000 recordings each were assigned for scoring. 
The data of Set-B were made available (without 
classification outcome), whereas Set-C was not disclosed 
(only used to determine the final score for the Challenge). 
The data provided consisted of a collection of 
demographic and clinical variables. Each clinical variable 
was presented as a series of measurements, each one 
marked with the time of acquisition. Variables could be 
recorded any number of times (missing measurements 
were also possible). 

Each record contained up to six demographic 
variables, referred to as “general descriptors” (Record ID, 
age, gender, height, ICU admission type, weight) and up 
to 36 clinical variables, measured an arbitrary number of 
times during the first 48 hours of ICU admission. 

The score was defined by the Organisers as the lowest 
between sensitivity and positive predictive value in 
classification (“survivors” vs. “non-survivors”) of the 
given dataset. 

 
2.2. Feature definition 

The “Record ID” information was discarded from this 
study as it was not relevant to the topic. For each of the 
remaining variables, all measurements from all recordings 
of Set-A were collected to generate two separate 
distributions, for the “survivors” (S) and the “non-
survivors” (NS) groups. 

For each distribution Dj(S), Dj(NS) of the jth variable 
(j=1,…,41), the 5th – 95th percentile range was calculated 
and divided into 10 equally sized bins: ΔDj(S), ΔDj(NS). 

For each measurement vjk of variable vj, the relative 
posterior probability Pj

k of such measurement being from 
a “survivor” (i.e. being from the distribution Dj(S)) was 
defined as: 
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where “#” denotes “number of”. By definition 0 ≤ Pj

k ≤ 1. 
For each variable, a feature Fj was defined: 
 

}{ k
jkj PmeanF =       (2) 

 
If no measurement was available for the jth variable 
(k=0), Fj was assigned to the default value of 0.5 (equal 
likelihood of sample being drawn from “survivor” or 
“non-survivor” distribution). 

 
2.3. Feature selection 

Set-A was randomly partitioned N (=10) times 
following a “leave-M out” (M=50%) approach for cross-
validation (CV), preserving the “survivors”-to-“non-
survivors” ratio. For each partition, a forward sequential 
selection (FSS) with logistic cost function was adopted, 
with the goal of determining the features with highest 
discrimination ability. Features that were selected in two 
or more partitions, constituted the final set.  

 
2.4. Classification 

Binary classification of recordings (“survivors” vs. 
“non-survivors”) was done using a supervised-learning 
approach. Several classifier models were implemented 
and compared: support vector machine with radial basis 
function kernel (SVM), linear discriminant (LDA), naïve-
Bayesian (NB), and logistic (LRM). The last was 
eventually chosen as the one showing the best 
performance.  

The chosen classifier was based on a logistic model 
having the selected features as regressors. The classifier 
was trained (model parameters were estimated) on Set-A. 
The output of LRM was compared against an empirical 
threshold THRC to determine the classification outcome. 
THRC was tuned in order to maximize the score on Set-A 
after the model’s (regression) parameters had been 
estimated. 

 
 
 
 
 

478



3. Results 

3.1. Feature selection and cross- validation 

FSS and CV yielded a total of 32 features. Table 1 
shows the selected features and the number of 
occurrences (NO) across the CV partitions (2 ≤ NO ≤ 10). 
 
Table 1. Occurrence of selected features in CV partitions.  
NO  Features 
10 Age, Glasgow Coma Scale, Temperature, 

Blood Urea Nitrogen, Glucose 
9 Weight, Sodium, White Cell Count, 

Bilirubin, Cholesterol 
8 Height, ICU Admission Type, Troponin I, 

Troponin T 
7 PaCO2, Resp. Rate, Heart Rate, Hematocrit, 

Albumin, ALP Transaminase 
6 SaO2, NI Systolic BP, Magnesium, Platelets, 

Lactate  
5 PaO2  
4 Systolic BP  
3 pH, Mean Art. BP, NI Diastolic BP, ALT 

Transaminase, AST Transaminase  
2 (none) 
NO: Number of occurrences across CV partitions 
 

Figure 1 illustrates the performance of various 
classifiers on Set-A partitions used for CV. The logistic 
classifier (LRM) exhibited the highest performance on the 
test sets (XS) of the partitions. 

 

 
Figure 1. Performance of different classifiers on training 
(TS, green trace) and test (XS, red trace) set, for each 
partition of CV.  
 
3.2.  Mortality prediction 

The ability of the proposed algorithm (FSS-LRM) to 
predict mortality of ICU patients based on information 
collected in the first 48 hours was evaluated using an 
established method (SAPS-I) for comparison. 

Table 2 shows the performance (Event I score) on 

three datasets (Set-A and Set-B, revised 8 May 2012) of 
the proposed method, compared to the reference (SAPS-
I). 
 
Table 2. Performance of algorithms (Challenge Event I). 

  Score [%] 
Algorithm #Features Set-A Set-B Set-C 
SAPS-I(a) 15 29.6 31.7 31.3 
FSS-LRM 32 54.9 44.0 44.6 
(a)implementation by Physionet Challenge 2012 
Organizers [1]. 
 
Table 3 compares the performance of the proposed 
method with SAPS-I, using only features (Fj) from the 
SAPS-I variable set. 
 
Table 3. Performance of proposed algorithm (using only 
SAPS features) on Set-A. 
Algorithm Observation 

Interval [hours] 
Score [%] 
Set-A 

SAPS-I 0-24 29.6 
FSS-LRM 0-24 13.9 
 0-48 49.3 
 
4. Discussion 

In this study a new algorithm was presented to predict 
mortality of individual ICU patients based on information 
collected from the first 48 hours of admission. A set of 32 
features was extracted from the original set of 41 
variables (“Record ID” was excluded), for binary 
classification (“survivor” vs. “non-survivor”).   

Features were defined as the posterior probability ratio 
of being a member of the “survivors” group versus the 
“non-survivors”, based on posterior knowledge from the 
training set Set-A.  

The (frequent) cases of missing measurements for any 
of the 41 variables were handled following a simple 
intuitive approach of assigning the feature value (Fj) to 
“equal likelihood” of the sample being drawn from the 
“survivors” or the “non-survivors” group.  

Of the 15 variables (features) used in SAPS-I, 11 were 
also selected by FSS (age, systolic blood pressure, 
respiratory rate, Glasgow Coma Scale, heart rate, 
temperature, blood urea nitrogen, glucose, hematocrit, 
sodium, white cell count). 

The proposed method (FSS-LRM) exhibited higher 
performance compared to the reference SAPS-I (Table 2), 
both in the training and test sets. Both methods are based 
on posterior probability. However, FSS-LRM estimates 
posterior probability based only on data distributions 
from the available measurements. As shown in Table 3, 
increasing the observation window from the first 24 to 48 
hours substantially increases the classification 
performance, indicating the presence of relevant 
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information beyond the time frame considered in SAPS-I.  
On the other hand, the dramatically lower performance 

of FSS-LRM with respect to SAPS-I for classification 
based on the first 24 hours also suggests that the data 
distributions Dj(S), Dj(NS) require an adequately large 
sample size to yield a reliable estimate of the posterior 
probability ratio Pj

k as the size of the bins ΔDj(S), 
ΔDj(NS) depends on the spread of the distributions, 
which generally increases with increasing number of 
observations.  

Comparing Table 2 with Table 3, it can be seen that 
additional features (selected by FSS) further contributed 
to increasing the classification performance (49.3% vs. 
54.9%).   

In conclusion, the proposed method based on the 
established approach of binary classification inspired by 
posterior probability, corroborates the hypothesis that 
increasing the observation period from (the first) 24 to 48 
hours, and adding relevant clinical variables, may 
improve accuracy of ICU patient mortality prediction.  
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