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Abstract

Introduction: Anintensive care unit mortality prediction
model for the PhysioNet/Computing in Cardiology Chal-
lenge 2012 using a novel Bayesian ensemble learning al-
gorithm is described.

Methods: Data pre-processing was automatically per-
formed based upon domain knowledge to remove artefacts
and erroneous recordings, e.g. physiologically invalid en-
tries and unit conversion errors. A range of diverse fea-
tures was extracted from the original time series signals
including standard statistical descriptors such as the min-
imum, maximum, median, first, last, and the number of
values. A new Bayesian ensemble scheme comprising 500
weak learners was then developed to classify the data sam-
ples. Each weak learner was a decision tree of depth two,
which randomly assigned an intercept and gradient to a
randomly selected single feature. The parameters of the
ensemble learner were determined using a custom Markov
chain Monte Carlo sampler.

Results: The model was trained using 4000 observa-
tions from the training set, and was evaluated by the or-
ganisers of the competition on two new datasets with 4000
observations each (set b and set c). The outcomes of the
datasets were unavailable to the competitors. The com-
petition was judged on two events by two scores. Score
1 was the minimum of the positive predictive value and
sensitivity for binary model predictions, and the model
achieved 0.5310 and 0.5353 on the unseen datasets. Score
2, a range-normalized Hosmer-Lemeshow C statistic, eval-
uated to 26.44 and 29.86. The model was re-developed
using the updated data sets from phase 2 after the compe-
tition, and achieved a score 1 of 0.5374 and a score 2 of
18.20 on set c.

Conclusion: The proposed prediction model performs
favourably on both the provided and hidden data sets (set
A and set B), and has the potential to be used effectively
for patient-specific predictions.

1. Introduction

The intensive care unit (ICU) admits only the most
severely ill patients who require life-sustaining treatments
or extensive monitoring. Each patient receives a level of
clinical care greater than that on a general medical-surgical
floor. As such, the acquisition and storage of data collected
from ICU patients could provide the research community
with a rich data source for developing predictive models of
patient outcomes. However, data emanating from ICUs are
not always in an easily accessible format, and the fusion of
such data into a form amenable to analysis is a primary task
in the development of many clinical prediction systems.

The patient outcome that has been the focus of much
predictive model development is mortality before hospi-
tal discharge. Early models include the Acute Physiology,
Age, and Chronic Health Evaluation system [1], the Sim-
plified Acute Physiology Score [2], and the Mortality Pre-
diction Model [3]. These models have proven useful for
comparing observed vs. predicted outcomes across ICUs
and thus were used for benchmarking purposes. How-
ever, none of these models contain sufficient precision to
be used on an individual patient level. More recent ver-
sions of these predictive models [4–6] address the tendency
of predictive models to erode in calibration over time [7],
but have not reached sufficient accuracy to be used in de-
termining the appropriate clinical care for a patient. The
goal of the Physionet 2012 competition was to encourage
development of models whose main purpose was patient-
specific mortality prediction.

2. Materials and methods

2.1. Dataset

This study usedtwo datasets provided for the Physionet
2012 challenge. These datasets were originally extracted
by the Physionet 2012 challenge coordinators from the
open access Multiparameter Intelligent Monitoring in In-
tensive Care (MIMIC) II database, which was developed
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to aid intelligentpatient monitoring research in the critical
care environment [8]. Three datasets were extracted from
MIMIC II by the competition organizers, and are referred
to as set A, set B, and set C. All datasets comprised of
4000 patient stays in the ICU lasting at least 2 days. The
data were formatted as time-stamped measurements for 37
distinct variables. Furthermore, measurements for 5 static
variables which were collected once at the beginning of
the patient’s ICU stay are also present in the datasets. Set
A was made available for model development, with cor-
responding hospital mortality outcomes provided for each
patient. A positive outcome indicates that the patient died
in the hospital. Set B was also made available for model
testing, and as such no outcomes were provided. The third
dataset, Set C, was not available but used to evaluate the fi-
nal models during the Computing in Cardiology 2012 con-
ference.

2.2. Data preprocessing

Prior to usingthe dataset, each subjects’ measurements
were assessed using domain knowledge and distributional
assumptions. That is, we impute physiologically implausi-
ble values for certain variables, either assigning the entry
as unknown or substituting it with a physiologically valid
entry. An example substitution would be converting height
from an implausible value (e.g. 65, presumably an erro-
neous recording using inches) to a plausible value (e.g.
165 centimetres). This variable specific pre-processing
was performed for age, height, diastolic blood pressure,
heart rate, partial pressure of carbon dioxide, partial pres-
sure of oxygen, hydrogen ion concentration, temperature,
troponin I, white blood cell count, and weight. Missing
data was present in the data and handled by the model.

2.3. Variableextraction

We converted each patient’s time-stamped temporal
variables into scalar features. For the static variables; age,
initial weight, height, and gender, this was done by directly
treating the value present as a feature. For the temporal
variables, this was done by extracting the minimum, max-
imum, median, first, last, and number of values for each
time stamped variable. Thus, for each temporal variable,
six features were extracted.

2.4. Evaluationmetrics

The agreement betweenpredicted binary outcomes (af-
ter thresholding a predicted probability) and observed out-
comes was assessed by the number of true positives (TP),
false positives (FP), true negatives (TN), and false nega-
tives (FN). True indicates that the prediction and the ob-
served outcome agreed, positive indicates an outcome of

one, and negative indicates an outcome of zero.
For the Physionet 2012 competition, two official met-

rics were used to assess the performance of the submitted
models. Score 1 (s1) evaluatesmodeldiscrimination, and
score 2 (s2) the modelcalibration. Further to these two
official scores, additional metrics were used, including the
normalized log-likelihood (NLL) and the area under the
receiver operator characteristic curve (AUROC).

s1 is the maximumof the sensitivity (Se) and the pos-
itive predictivity (PPV ) at a given operating point.s2 is
a modified version of the Hosmer-LemeshoŵC statistic
(HLĈ) [9]. The HLĈ involves grouping predictions into
deciles of predicted risk, and calculating the mean error
within each decile.s2 is derived from theHLĈ by further
dividing the statistic by the difference between the mean
prediction in the highest decile and the mean prediction in
the lowest decile and a constant of 0.001. The AUROC
is the probability that a patient with a positive outcome is
given a higher probability of mortality than a patient with
a negative outcome. Mathematically, this is interpretable
as thePr(X = 1) > Pr(Y = 1), whereX is the set of
patients with observed positive outcomes, andY is the set
of patients with observed negative outcomes. TheNLL is
a metric based on information theory ranging between 0-
1, with lower values indicating better model performance.
The formulas for calculating these statistics are shown in
Table 1.

Statistic Equation

Sensitivity (Se) TP
TP+FN

Positive TP
TP+FPPredictive

Value (PPV)

AUROC
N∑

i=1

[
∑M

j=1
1(Xi>Yj)]

N×M
NLL

N∑

i=1

(yiln(pi) − (1 − yi)ln(1 − pi))

Hosmer ∑D
j=1

Oj−Ej

njpj(1−pj)+0.001LemeshowĈ

Score 1(s1) min(Se, PPV )

Score 2(s2) HLĈ

pD−p1

Table 1. Listof the various performance evaluation met-
rics used in this study and the formulae for calculating
them.

2.5. Modeldescription

A tree basedclassifierwas developed using a Bayesian
framework. The algorithm has many advantages, including
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high overall performance and automatic handling of miss-
ing data, outliers, and normalization. Each tree selects a
subset of observations via two regression splits. These ob-
servations are then given a contribution equal to a random
constant times the observation’s value for a chosen fea-
ture plus a random intercept. Furthermore, the tree also
assigns a contribution to missing values for this chosen
feature based upon a scaled surrogate. The contributions
across all trees are summed to provide the contribution for
a single “forest”, where a “forest” refers to a group of trees
plus an intercept term. The predicted probability output by
the forest is the inverse logit of the sum of each tree’s con-
tribution plus the intercept term. The intercept term is set
to the logit of the mean observed outcome.

The core of the new model is the custom Markov chain
Monte Carlo sampler which iteratively optimizes the for-
est. This sampling process has a user defined number of
iterations and a user defined number of resets (each reset
involves reinitializing the forest and restarting the iterative
process). After mapping the training data onto the quan-
tiles of a normal distribution, the forest is initialized to a
null model, with no contributions assigned for any obser-
vations.

At each iteration, the algorithm selects two trees in the
forest and randomizes their structure. That is, it randomly
re-selects first two features which the tree uses for split-
ting, the value at which the tree splits those features, the
third feature used for contribution calculation, and the mul-
tiplicative and additive constants applied to the third fea-
ture. The total forest contribution is then recalculated and a
Metropolis-Hastings acceptance step is used to determine
if the update is accepted. If the update is accepted, the two
trees are kept in the forest, otherwise they are discarded
and the forest remains unchanged. After a set fraction of
the total number of iterations to allow the forest to learn
the target distribution (20%), the algorithm begins storing
forests at a fixed interval, i.e. once every set number of
iterations. Once the number of user-defined iterations are
reached, the forest is re-initialized as before, and the iter-
ative process restarts. Again after the set burn-in period,
the forests begin to be saved at a fixed interval. The final
result of this algorithm is a set of forests, each of which
will contribute to the final model prediction.

In order to provide a binary prediction of survival, it was
necessary to threshold the risk value (a probability between
0 and 1). The threshold was that which maximized thees-
timatedvalue ofs1 on the testset. The calculation of the
estimateds1 for each riskthreshold is identical to the cal-
culation ofs1, except thetrue positive and false positive
values are estimated from the predicted risks. The esti-
mated true positives and estimated false positives at each
risk value were calculated by sorting the risks across all
patients and cumulatively summing the risks and the com-

plement of the risks.

2.6. Model development and assessment

In order toestimate the performance of the model, jack-
knifing was performed. Each jackknife iteration involved
redeveloping the model for randomly subsampled sets of
Set A, followed by evaluating the predictive performance
on the out of sample subset. These subsets are referred
to as the training and validation sets, respectively. The
training sets included 3000 patients while the validation
sets included 1000 patients, repeated 32 times to assess the
variability of the evaluation metrics.

The final model submitted to the competition utilized all
4000 patients in set A in an earlier version of the dataset.
The threshold for survival was set based upon the predic-
tions on the 4000 patients in set B. Though the dataset was
modified during the competition, the entry submitted was
trained using the earlier dataset. Additional results are pro-
vided for a model developed after the competition close,
using all 4000 patients in the updated version of set A. The
threshold was re-calculated for this model.

3. Results

The evaluation metrics on the out of sample data for set
A are shown in Table 2 for the proposed model and the
sample model provided by Physionet (SAPS). For set A,
the data shown are the mean and standard deviation from
32 jacknknife repetitions of model development and eval-
uation. The evaluation metrics on all the data for set B and
set C are shown in Table 3. The final entry achieved as1 of
0.5310 for setB and as1 of 0.5353 forset C. Furthermore,
the entry achieved as2 of 26.44 forset B and as2 of 29.86
for setC. The threshold for the final entry was0.3380 as
chosen using the estimateds1 on set B.

Table 2. Evaluation metrics of SAPS and the developed
model on set A (1000 out of sample observations). None
of the observations evaluated by the metrics were used in
the model development.
*Set A statistics are presented as the mean and standard
deviation from 32 jackknife repetitions.

Metric SAPS SetA Set A∗ Set A 95%CI
AUROC 0.6668 0.8602 (± 0.014) 5.13×10−3

NLL 0.4023 0.2891 (± 0.017) 5.95×10−3

s1 0.2957 0.4846 (± 0.032) 1.14×10−2

s2 69.001 16.825 (± 9.72) 3.505

The model developed after competition close using the
same methods but with the newer data set achieved as1 of
0.5353 and ans2 of 13.67on set B and as1 of 0.5374and
ans2 of 18.20onset C.
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Table 3. Evaluation metrics on set B (4000 observations)
and set C (4000 observations) of the competition for the
model (data not used for training).

Metric Set B Set C
s1 0.5310 0.5353
s2 26.44 29.86

4. Discussion andconclusions

Jackknifing is acommon method used to assess both the
inter-observation variability inherent in the data and the
projected accuracy on an unseen set of observations. Since
jackknifing requires a sub-sample of the training set, it is
not unexpected for a model developed using the full train-
ing set to generalize better, as seen by the improvement of
score 1 when developing using all observations.

It is worth noting the variability present in the competi-
tion metrics as revealed by the jackknife assessment. The
variability of s2 is particularly striking,and the metric is
very sensitive to subtle variations in the evaluated data.
This is likely due to the binning procedure of the obser-
vations. The increased variability ofs1, though less severe
ass2, may be causedby the added variability of the selec-
tion of a threshold, and the loss of numerical accuracy by
rounding the final predictions. This increase in variabil-
ity adds difficulty in distinguishing a model’s superiority
due to its methods or due to simple random chance. It is
thus unsurprising to see the drastic changes ins2 on set B
andset C, as this may just be due to random chance and
the large variability inherent to the metric. Conversely, the
AUROC and the normalized-log likelihood both have the
lowest variability of all the metrics. The AUROC is ad-
vantageous due to being a widely recognized and under-
stood metric. The normalized log-likelihood, though not
as ubiquitous, has the added advantage of also assessing
the model calibration. For example, a model may gener-
ate predictions between 0-0.2 and still have an excellent
AUROC as it distinguishes positive outcomes from nega-
tive outcomes well. The same does not hold true of the
model’s normalized log-likelihood, which effectively eval-
uates both a model’s discrimination and a model’s calibra-
tion. Nonetheless, the determination of a standard metric
for evaluating mortality prediction systems is still an un-
solved problem.

The lower than expecteds2 of the modelis explainable
by it being developed on an earlier version of the data set
and utilizing information which was later removed. While
the evaluation data sets were updated, the model still ex-
pected to use the missing information in calculating predic-
tions. After the competition, the model was re-developed
and thes1 improvedby 0.0021 while thes2 improvedby

11.65.
The proposed model had extremely good overall perfor-

mance, with a median AUROC of 0.860, achieving much
better performance than the SAPS sample model (AUROC
of 0.667). The model has many advantages, such as au-
tomatic handling of missing data, and utilizing easily ex-
tractable features from regularly collected clinical parame-
ters. The model’s predictions discriminate patient mortal-
ity extremely well, and calibrate well. The model provides
a promising new method of patient specific mortality pre-
diction and decision support at the bed side.
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