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Abstract 

T-wave alternans (TWA) is widely understood as an 

important indicator and a predictor of risk of sudden 

cardiac death (SCD). This research provides an 

improved spectral method of detecting and quantifying T-

Wave alternans. Basically, the algorithm used enhanced 

TWA spectrum and T-Slope variations to generate two 

parameters: enhanced alternans ratio (EAR) and range 

index (RI). Then, the singular value decomposition 

method was applied to fuse two parameters. The results 

showed that our method has 82.4% accuracy on MIT-

SCD database and 76.7% accuracy on normal healthy 

individuals. Moreover, the method achieved the 0.636 

final score on the official PhysioNet Challenge 2008 

dataset. 

 

1. Introduction 

T-wave alternans (TWA) was first observed by H.E. 

Hering [1] at one hundred year ago. Basically, TWA is a 

pattern in the ECG characterized by two distinct forms of 

T-waves appearing in alternation. TWA measurements 

allow detecting the periodic changes of the consecutive 

T-wave amplitude at microvolt level [2-4]. Furthermore, 

some recently studies showed that TWA is related to 

cardiac instability and increased arrhythmogenicity [5-6]. 

Currently, TWA is widely understood as an important 

indicator and a predictor [7] of risk of sudden cardiac 

death (SCD) which is responsible for an estimation of 

400,000 deaths per year in the United States and millions 

of mortalities worldwide.  

SCD is a life threatening event which is result of a 

precipitous loss of heart function. When this occurs, no 

blood can be pumped to the rest of the body within 

minutes in a person with known or unknown cardiac 

disease. Only 1-2% of patients can survive when SCD 

occurs outside of a hospital [8]. Fortunately, TWA is 

potentially a SCD risk indicator to prevent the possible 

loss.  In particular, the absence of significant TWA in a 

patient with congestive heart failure, low ejection fraction, 

or a recent myocardial infarction is strongly predictive of 

a low risk of SCD. 

Hence, many researchers [2-4][6] provided their 

methods to detect, to enhance, and to quantify TWA. For 

examples, Moreno-Martinez et al. [9] offers a modified 

spectral method to increase the alternans significance 

with regard to the noise in the spectral domain and yield 

better performance in a noisy environment. Strumillo et 

al. [10] carried out the usefulness of Poincaré mapping in 

detection of T-wave alternans and its comparison to a 

well-established Fourier spectrum method for TWA 

quantification. For comprehensive knowledge of TWA, 

Martinez et al. [6] summarized multiple TWA 

quantification methods, including energy spectral method 

(ESM), spectral method (SM), complex demodulation 

method (CD), correlation method (CM), Karhunen-Loeve 

transform (KLT), Capon filtering method (CF), Poincaré 

mapping method (PM), periodicity transform method 

(PT), statistical tests method (ST), modified moving 

average (MMA), and Laplacian likelihood ratio method 

(LLR).  

However, according to Janusek et al. [4], all spectral 

methods of TWA are sensitive to physiological 

interference. Hence, the aim of our research is to propose 

a more robust spectral method of detecting and 

quantifying TWA by using fusion technology which 

combines two different spectral methods. 

  

2. Methods 

Our method was implemented by applying seventeen 

records (with T waves presented) of MIT/BIH Sudden 

Cardiac Death Holter Database and 30 records of our 

normal subject database as developing datasets. Then, the 

official PhysioNet/Computers in Cardiology Challenge 

dataset at http://physionet.org/challenge/2008/ 

(PCCC2008) was applied to evaluate the performance of 

the algorithm. 

2.1. System structure 
The system structure (fig.1) of our improved spectral 

method contains three major components, including 

enhanced spectral method (EnSM), spectral analysis of T-

Slope variations (TSV), and singular value 
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decomposition (SVD). The details of three components 

will be described as follows.  

 
Fig.1 System structure of our improved spectral method 

2.2. Preprocessing - T wave extraction 
T wave extraction is a critical step for TWA analysis. 

First, digital filters were utilized to remove general 

arterial interference and to limit the ECG bandwidth 

between 1Hz and 50Hz. Second, Tompkins [11] method 

is used to indicate R waves. With detected R points, T 

points can be located by cross-checking on the maximum 

points of ECG and all the zero-crossing points of dECG. 

After T points are detected, our method captures 0.1 

second before and after T points as our T wave window. 

Finally, there are 128 consecutive T waves which were 

captured for TWA analysis. 

 

 
Fig.2  T wave extraction 

2.3. Preprocessing - traditional spectral 

method (SM) 
Nowadays, spectral method (SM) is a well-known 

method to analysis TWA. Briefly saying, the method 

averages power spectra of 128 time-aligned T-wave with 

the beat-to-beat amplitude fluctuation on each sampling 

point of T-wave. The averaged spectrum (
SMPSD ), the 

traditional SM spectrum, appears as the spectral peak at 

the frequency of 0.5 cycles per beat (cpb). Hence, the 

alternans ratio (AR) can be obtained by: 

 

noise

noiseP
AR

σ

−
=

5.0                               …(1) 

where P0.5 is the amplitude of peak at the frequency 

0.5 cpb; noise and 
noiseσ  are average and standard 

deviation of the noise registered in the spectrum outside 

the alternans frequency, 0.5 cpb; however the noise band 

is not always be the same for researchers. For example, 

Richter et al. [2] defined the reference noise band is 

between 0.44 and 0.49 cpb, but Moreno et al. [9] used the 

noise band at range [0.33 0.48] cpb. In our research, the 

noise band is at range [0.42 0.46] cpb, and P0.5 is the 

maximum value at range [0.47 0.5] cpb by considering 

potentially TWA frequency shifting. 

2.4. Enhanced spectral method (EnSM) 
As known, the T wave represents the repolarization of 

the ventricles. The interval from the beginning of the 

QRS complex to the apex of the T wave is referred to as 

the absolute refractory period. The last half of the T wave 

is referred to the relative refractory period. Hence, the 

idea of the enhanced spectral method (EnSM) is to 

observe the absolute refractory period, the relative 

refractory period, and the transition period together.  

As mentioned in session 2.2 and fig. 2, the left and 

right boundary points (so-called L0.1 and R0.1 points) of 

our T wave window represent the middle stage of the 

absolute refractory period and end stage of relative 

refractory period, respectively. Then other points in 

between is the transition period. 

Next, the new EnSM spectrum averages the traditional 

SM spectrum (
SMPSD ), left boundary power spectrum 

(
1.0LPSD ), and right boundary power spectrum (

1.0RPSD ) 

together. The 
SMPSD , 

1.0LPSD , and 
1.0RPSD are obtained 

by applying the classical Welch spectrum with 128 points 

as window size and no overlapping applied. The 128 

boundary points came from 128 time-aligned T-waves. 

  

 
Fig.3  Plot 

SMPSD , 
1.0LPSD , 

1.0RPSD , and 
EnSMPSD  spectra 

together (from top to bottom) 

 

Four spectra are compared in fig. 3, which include 
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traditional TWA spectrum (
SMPSD ), L0.1 spectrum 

(
1.0LPSD ), R0.1 spectrum (

1.0RPSD ) and enhanced TWA 

spectrum (
EnSMPSD ). Similarly, the enhanced alternans 

ratio (EAR) inherited from eq. (1) can also be calculated 

from the new EnSM spectrum. 

2.5. Spectral analysis of T-slope variations 

(TSV) 
The spectral analysis of T-slope variations (TSV) is 

defined as Fourier transform analysis on T-wave slope 

variations. Here, the T-wave slope is defined as either the 

slope between L0.1 and T point or the slope between R0.1 

and T points (fig.4). We expected to obtain the AB mode 

on slope variations, as same as traditional TWA. Then, 

the consecutive 128 slopes on each side were obtained. 

Again, the classical Welch spectrum is applied on beat-

to-beat slope variability to quantify the AB mode (fig.5).  

 

 
Fig.4 Describe the slope between L0.1 and T point; the slope 

between R0.1 and T points. 

 

 
Fig.5. Upper: slope variation tachograms; Lower: the spectra of 

both slope variations. 

 

The low frequency (LF) and high frequency (HF) 

bands of T-slope variations is set at [0.078 0.3] cpb and 

[0.3 0.5] cpb, respectively. The very low frequency  

(lower than 0.078 cpb) casued by baseline wonder is 

ignored on our TSV analysis.  

To quantify the spectra of T-slope variations, the range 

index (RI) is defined as the difference of maximum and 

minimum of LF and HF magnitudes in dB (fig. 6). The 

minimum value can be considered as background noice 

magnitude, and the maximum value can be considered as 

alternan frequency. According to our investigation, RIL0.1 is 

more significant than RIR0.1. Hence, the RIL0.1 is selected to fuse 

with EAR. 

 
Fig.6 Explanation for range index (RI) 

 

2.6. Fusion by using singular value 

decomposition (SVD) 
The singular value decomposition (SVD) is widely 

applied on many applications, such as computing the 

pseudoinverse, matrix approximation, and determining 

the rank, range. SVD which belongs to the batch category 

can compute principle components [13]. Hence, SVD is 

used to fuse EAR and RI to reduce physiological 

interference. 

From a numerical perspective, a better method is to 

use singular value decomposition by applying it directly 

to the data matrix [13]. The data matrix A(n), contained 

both EAR and RI values, is decomposed as follows: 
TVUA Σ=                                   …(2) 

where U and V are orthogonal matrices and called the left 

singular vectors and the right singular vectors. The matrix 

ぇ contains the singular values (j1,j2,…jk) of the data 

matrix A, which can be thought of as scalar by which 

each corresponding input is multiplied to give a 

corresponding output.   

 In our research, EAR has more contribution on first 

singular value j1 than RI, so the developing fusion 

formula has more proportion on EAR. In eq.3, a new 

index, S is described as follows, 

 

 RIEARS
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+

+
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 where j1 /(j1 +j2) = 0.77 andj2 /(j1 +j2) =  0.23. 
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3. Results 

For developing data sets (MIT/BIH Sudden Cardiac 

Death Holter Database and our normal subject database), 

our improved spectral method successfully indicates 

82.4% of people within SCD database at high risk, and 

76.7% of people within normal database at low risk. The 

details of our results are listed in table 1. 
Table 1. The accuracy table of developing data. 

SCD database 

(17 records) 

Normal database 

(30 records) 
 

# of 

exception 
Accuracy 

# of 

exception 
Accuracy 

AR 

(TH=2.5) 
9 47.1% 8 73.3% 

EAR 

(TH=2.5) 
5 70.6% 9 70% 

RI (dB) 

(TH=24) 
4 76.5% 9 70% 

S: SVD 

(TH=5) 
3 82.4% 7 76.7% 

 

For testing data set (PCCC2008 with 100 samples), 

our proposed methods got the score of final reference 

ranking, 0.636 [14]. However, score 0.549 is achieved 

when only ERA method was applied. Table 2 lists 

standard statistic results of EAR and RI for both SCD and 

PCCC2008 databases. The t-test probability of SCD 

database is not calculated because the sample size is less 

than 30 samples.  
Table 2. The standard statistics analysis of ERA and RI 

 Mean±Std. Max Min t-test Prob. 

EAR 

(SCD) 
4.99±6.55 25.60 -1.41 n/a 

EAR 

(PCCC 2008) 
27.01±107.90 900.89 -1.60 < .0001 

RI (dB) 

(SCD) 
34.92±12.29 62.72 21.45 n/a 

RI 

(PCCC 2008) 
32.52±15.33 63.27 7.67 0.0139 

 

4. Discussion and conclusions 

The traditional AR is considered as our standard result. It 

is interested to compare our parameters (EAR/RI/SVD) 

with traditional AR values. Hence, based on the 

PCCC2008 database, the correlation coefficients were 

calculated in Table 3.  We found that EAR and SVD 

values is somewhat correlated with AR values, but RI has 

low correlation.  
Table 3. Correlation coefficient matrix for traditional AR comparison 

 EAR RI SVD 

AR 0.6629 0.3345 0.6656 

  Overall, according to our results by analyzing 

SCD and PCCC2008 databases, the traditional TWA 

method still has the room to improve. In addition, our 

method is potentially able to estimate the levels of the 

SCD risk. 
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