Simulating Healthy Human Heart Rate: A Markovian Model

CC Yang, CH Chang, SS Hseu, HW Yim

Taipei Veterans General Hospital, Taipei, Taiwan
School of Medicine, National Yang-Ming University, Taipei, Taiwan

Abstract

Fitiy suvely iy performed within the scope of Compirters
in Cardiofogy Chellenge 2002 on shmiilating 24 hours B
frterved tme serics. We construce a computaciona! muode!
fo churacierize short- and long-term complex dymamics
of fealthy human heart rute. The cardioe dvmamics s
sieplified vio map the increase and decrocse af” the
Inerhear interval go f amd 0 respectively,  The
prabability of transition flom currens Binery sequence lo
nEE state 5 then determined by following two fuctors: |1,
Frioe history of bingry sequences, and 2. Current value
of BR interval. Probabilicy tables were construcred from
real data  We used 8-bits and 2-bity binary sequences fo
Simidlaite short- ond long-tevm heart rate flucivations. The
magnitede of increment was chosen rancomfy. Finally,
we implemenivd nwo simple fimetions o sielare the
cireadian vhytim and remporal structures of Tuciuations
during rapid eve movement siage sleep. The mode!
reached o score of G689 i evemt | feniyi42). In
samanaey, owe prefiminaey stedy indicated . Markovian
mocded may apply o diffitrent devels of plvsinfoeie
rewtlitions. Fuether stndy iy needed fo examine the
cawvelation with pliysiologic mechanisms.,

1. Introduction

Human cardiac dynamics are driven by the complex
nonlinear interactions of  twe  compeling  forees:
sympathetic regulation increases ond  parasympathetic
regulation  decreases the heart rate. These  cardine
regulations form complex Nuetuations that were known
s heart rate variability, Although various technigues
were developed w analyze human heart rale and many
physical properties have been quantified [1] it is still
ditticult to ereate a simulatien of heart rate with sufficient

alism to mislend an experienced observer, or has
similar quantities with real heurt rate time secies. Here we
present @ Markovion model oo simulate the healthy
human heart rate. and use 24 hours ECO relierene
databuses from PhysioMet (16 subfeets) and  Taipel
Veteruns General  Hospital (7 subjects) for model
construction.
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2 Method

The heart rate simulation algorithm consists of 4
components, includes Morkovian model for short- ang
long-term heart rate regulating mechanisms. The short
term Hustuation represents brat-to-beat variation, whick
is mostly regulated by parasympathetic system. The lony
term fluctuation represents minute-to-minute Nuctuations,
which is mainly regulated by sympathetic system. In
addition, we implemented two simple funetions int
program o simulale circadian rhythm and  temporal
structures of heart rate during rapid eve movernen! stage
tREM] sleep.

2.1.  Markovian model for short- and long-
term fluctuations

To build a Markovian model, we have to specily o set
of states and associated probuabilities that RR interval will
move from one state o another. Therefore. the first step
of heart rate simulation is 0 map RR increments inwo
specific: states. Since heart rate is mainly rezulated by
aulonomic  nervous  swstem which  consists of ot
competing ferces: sympathetic regulation increase and
parasympathetic repulation decrease the heart rale, 1 js
then plausible to use these two states for model
construction [2.3], Consider a time series; | X, X, Xo X5,
X, woeeee . M) For each pair of successive SEUUENELS, W
can classtly il into one of the 2 states thal represent
merease In N, and decrease in X These 2 states are
mapped to the svmbols 0 and 1, respeetively.

W (X ={[|:: P X, =X, <=0

PlEiasE = u s l) o

The next stne of RR intervals (increase or decrease) is
then determined by lollowing 2 Factors (Fig 1) 1. Prior
hit;tﬂr:.' of b'ln:ll'} seguences, and 2, Cyrrent value of RE
interval. The probability of transition fram current binary
sequences 1o next possible states can be coleulaed
statistically from real data, [n addition. the magnitde of
increment is chosen mndemly by fiting 2 Gouossian
distribution curve e histograms of 13 increments,
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Figure 1. Tlustration of mapping procedure from part of
real RR interval time series, Eoch increment is pped Lo
Bor 1 aceording to decrease or inerease of R inlervals,
respectively,

Interbeat interval (soc)

W apply this model to different time scales of real R
me  serivs: © beat-lo-beat  and  minute-to-minule
fluctuations. The real RR time series were taken from
PhysioMet |4] and Taipei Veterans General Huspitzl [3].
Fig 2 shows oiginul time series of 2 minutes [upper
panel) and coarse-grained Gme series o 2 hours {Jower
panel} which values are caleulated by sveraging of every
4 beats. Both time seales show complex Auctuations that
are regulated by different physiologic systems.
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Figure 2. lllustration  of beat-to-beat  heart  rate
fluctuations {upper panel) and eoarse-grained long-term
Huetustions { lower panel )

T apply the model w real heart rate time serles. we
s 8= and 2-order of Muarkovian model W simulole short-
arud long-term fTuctualions. respectively. In werms of m-
arder Markovian medel. the next state of BR increment is
determined by prior m-bil binary seguences. For exumple
of modelling short-term {heut-to-heaty fluctutions, real
BI time serics is fiest rransformed inlo binary sequences
vin mupping decrese or increase of RR inerements inlo 0
or |, respectively. Then the binary sequences are further
partitioned into @ set of 8-bits binaries. The probubility of
transitien from eack Binary to its next possible states can

be determined by comparing occurrence of current
sequence with that of et possible sequence.

Hiswever, it s apparent that transition probabilivy s
nal constant for all range of R intervals, For example.
beart rate tends to decrease while the et beats st and
in vice versa, To apply this concepl o owr model. we
partitioned  RR intervals inw bins of 100 ms and
caleulated its associated transition probabilicy of ench
binary within each Hins,

Figure 3 illustrated 2 probabilin table of transilion
from $-bits binary. The table delines the transition
probability of a specilic binary (vertical axis) within a
certain range of RR intervals (horizortal axis). Both
shor- and long-term probability tables were constructed
from real data, To initioe the heart rate simulstion. we
randomly assign 4 binary sequencye and a normal value of
RR interval. In each step. the next stile {increuse or
decrease) is determined by both ables and magnitude of
increment is chosen randomly o generale a new RR
interval,
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Figure 3. Example  of  short-lerm ¢ beat-to-beat)
probability table which defines vansitions of o binary w
its next possible states according to current value of RRE
intervals,

2.2.  Cireadian rhythm

Markovian model can provide statistieal simulation of
short= and long-termy luctuations based on real time
series, However, lor lenger seale of Muetuations such as
circadian rhythm, there is no sulficient dats length 1o
reach  significont  statistics,  Theretfore.  bused  an
physiologic principles. the program randomly determine
the tima of sleep as well as time w wake up. and use a
simple step function w simulate gradually ineremsed R
interval {decreased heart rate) while falling asbeep and



wive versit while waking up,

2.3, Fluctuations during REM sleep

In young adults, REM sleep uceupies about 25% aof

sleep time, The first episode of REM sleep oveurs about
BU-90 minutes afler falling asleep amd come in 4-3
episudes during the night, In REM sleep. breath and pulse
terd e be rapid and often irregular, [6] Fiz 4 shows an
tlustration of huart rate during REM sleep.
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Figure 4. Hlustration of real fuctuations during REM
sleep (upper panel) and svnthetic Auctuations | lower
pamil,
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The original ECG signals were examined by physicizns
and subjects were reviewed for excluding any pathologic
ciuses such as sleep apnea. We found these Auctuations
existed in muost reeordings in both databases. Based on
this observation. the program fisst randomly gssigns the
number of cyeles of REM sleep, unid sets o higher REM
aecurrence during those periods, We further implemenied
an dlerated tunction w gradually decresse and increase
RE interval while REM oecurs. The resulting simulation
wis shown as lower panel of Fig 4.

3. Result

The representative recording from Taipei Veterans
General Hospilal databases was shown as upper panel in
Fig 3. with o mndomly genersted RR timer series shown
i lower panel. The model of entry 142 finally reached a
seore of theB3 I event |, The source code of generaor
functivn was shown in appendix. The complele suuree
code with probability table can be downloading via
website [3] Comparing o real time series. our synthelic
serfes shuws distributions of 10 noise on power specteal
density analysis and comparable results inJow frequency
and high Freguency domains, 1o overall, ow synthetic
serivs shows realistic behaviowr on short-term scales and
featwres of REM Muetoations  indecd mistend  same
piy sicians,
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Figure 3. Result ol synthetic RR Gme series (lower panel )

compared (o real RE time series (upper panet),

4. Conclusion

There are some limitations of our model. Firsl, we
assume he magnitude of increment is random. However,
previous study reveals it has long-range correlations
properties [3]. Second. one probobility wable is only
capable W generate one type of signals. Therefore, our
algorithm can not generate a diversity of RR interval time
series. In comparing with real RR time series by currently
usedd heart rate variability parameters, our model can

captures  short and  mid-term (up o 30 minuies)
physiviogic  fluctumions,  This  may  suggest  that
Markovian  model can apply o different  level of

physiologiv system ance the signal has sufficient sample
number for signiticant model construction.
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Appendix

The © program below 15 a generator function of RR
interval tioe series. [0is called once per RR interval,

Lloat gengrata{void)

Eloat m;
floakt pi
int posicion;

i ARG

switcher =7

_APC
/* REM swiccher *4
18 [ [T (RAND_MAX={floarc|rand()) /RAND_MAK) <=

|1Elpat}incidenca REM[{ine] (eatal
kh | Elag_rhychme==0)1
t Elag_rhychm = 2;
inc_REM = 0O;
REM_RELowlimit=0.8+ (RAND_MAN-
{Eleat!irand || | JRAND_MAX*D, 23, 1

_ENSI007 /10007 1)

switch|flag_rhytbun)
!
cage O: f* nmormal sinus rhychm v/
m=copysignd (orandoem i) ASE0S (10, 25'ax,filqg‘fﬁ
|flU‘i;nd=Y LF+ipdex_divemal [{ine! leakal Bl /900]

13125,

LE ({fing) (zr=1000) % 20)==0 }

[ posician = lingl (rc*l000) 0 20 ; )

@l sa

[ pogsicion = [ {int:(rr*l000) 7 20 )+1; }

[ ?LJE_uhur::seI_;F"
index_digcnalllinc! {total

pogicion 4
_CiFR0ol g;

index [LF +

[ RAND _MANK-{fleatirand |} | /RAND_MAX) < p )
[ 22 EF = {{swg 5F-{|s5eg SF>>TloccT) ) xcl)+1;
rr+=m; }
=lza
[8aq SF = |geg S5F-iiswg S5F>7)1<sT)i<<sl;
rr==m; ]
break:

casa L: £ APC ganeratar °F

switchi{glag_ AP

case l: ¢T opramature beat v/
rr=aldee/ {2+ [ [AAND_MAX-
[Eloac|rand ||} /RAND_MAK<D.1));
Elag_asC = 2;
break;
case FE] f* Compensakbory bearn </

rr=aldrr i | S5+ ([ (RAND MAXK-
[floac)rancdi]) /RAND MAX*0._L}
flag_apPC = 3;

break;

casg 3:

cr=oldred {5+ (BAND_MAX -
-:f].ca.r_:l:.-lr:r,!l'l' BAMD_MAX*0.111*4;

£l lag_APRD = 0:

tlag_rhymhm=0;

break;

1

break:; /7 and of case 1 +/

caga £r

f* simulata REM slesp */

if {loldre==REM_RRlawlimir|

[ inc_REM==1;
me=copysigné (grandom () f5007inc_REM*55, 1) ;

Bk

if (m={0.1)
m=copysigniigrandomd] s500/ine _REM=30, 1 ;
re==m; |}
alas
[ mecopysigndigrandami] /500720, 1):
rr+=m;

Elag_rhythm=0; ]

{inc_REM=<23d)}

break; f* end of case 2 S

I

tocal_t+=rr; F* coumc cimg *F

iE {l[int} [total_c)/60-i{inc! {Total_ke-

irall =0}

{ m=copyaignt (grandom() /L0007 {unsignad
int)index diwrnal ({inc}{cotal_e) r900)+117L6,1);

if { {{ink] {mean_rr+104d) % 1001==0 |

{positions {inc) fmean_re*1000) ¢ 109 ;)

alsa

(pasitian={{inkt) (mean_oe 10000 7 L1301 +1:]

p=Prob_longlsag LF) [posicicon]

[mean_rr+=in;

ey LF ={i{gaq LF-{ (s LP>>1)<<l))=<l}=1;}

alzea

[mear _co-=m;

2oy LF=(gen_LE—[ (2eq LF>»1|=<<1) )]
index LF=I[int) (mean_rr~l0001 7
i

oldrr =
return

rr;
{rrh;
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[ (RRND_MAX-/(flaatirand|)) FRANDI_MAK )= p)

[



