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Abstract

A numerical model based on one-dimensional balance laws and ad hoc zero-dimensional boundary
conditions is tested against experimental data. The study concentrates on the circle of Willis, a
vital subnetwork of the cerebral vasculature. The main goal is to obtain efficient and reliable
numerical tools with predictive capabilities. The flow is assumed to obey the Navier—Stokes
equations, while the mechanical reactions of the arterial walls follow a viscoelastic model. Like
many previous studies, a dimension reduction is performed through averaging. Unlike most
previous work, the resulting model is both calibrated and validated against in vivo data, more
precisely transcranial Doppler data of cerebral blood velocity. The network considered has three
inflow vessels and six outflow vessels. Inflow conditions come from the data, while outflow
conditions are modeled. Parameters in the outflow conditions are calibrated using a subset of the
data through ensemble Kalman filtering techniques. The rest of the data is used for validation. The
results demonstrate the viability of the proposed approach.
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1. Introduction

The brain is one of the vital organs in the body, and stable perfusion is essential to maintain
its function. Cerebral circulation receives 15-20% of the cardiac output and is closely
regulated to maintain perfusion in response to metabolic and physiological demands. The
main cerebral distribution center for blood flow is the circle of Willis (see [15,37]), a ring-
like network of collateral vessels; see Figure 1(left).1 Blood is delivered to the brain through

*This research was initiated at and was supported by the Statistical and Applied Mathematical Sciences Institute (SAMSI), Research
Triangle Park, NC 27709-4006.
http://www.siam.org/journals/mms/7-2/70231.html

1Throughout the text, the standard abbreviated names for the vessels are used; ACA: anterior cerebral artery, MCA: middle cerebral
artery, PCA: posterior cerebral artery, ACoA: anterior communicating artery, PCoA: posterior communicating artery; see also Figure
3 and Table 2.
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the two internal carotid arteries and the two vertebral arteries that join intracranially to form
the basilar artery. Each of the internal carotid arteries branches to form the middle and
anterior cerebral arteries, which supply blood to the front and the sides of the brain (the
frontal, temporal, and parietal regions of the brain). The basilar artery bifurcates into the
right and left posterior cerebral arteries, which perfuse the back of the brain (the occipital
lobe, the cerebellum, and the brain stem). The ring is completed by communicating arteries
that connect the posterior and anterior cerebral arteries (via the posterior communicating
arteries) and the two anterior cerebral arteries (via the anterior communicating arteries).

Under normal conditions, blood flow in the communicating arteries is negligible. However,
if a subject has an incomplete circle of Willis, e.g., is missing one of the main arteries or
communicating arteries or is under pathological conditions such as complete or partial
occlusion of one of the cerebral or carotid vessels, the flow can be redirected to perfuse
deprived areas [25,26]. The ring-like structure of the circle of Willis is often incomplete or
not fully developed. It has been found that in more than 50% of healthy brains [5,47,48] and
in more than 80% of dysfunctional brains [58], the circle of Willis contains at least one
artery that is absent or underdeveloped. The most common topological variations include
missing communicating vessels, fused vessels, string-like vessels, and the presence of extra
vessels [4]. These topological variations may affect the ability to maintain cerebral
perfusion, which may increase the risk of stroke and transient ischemic attack in patients
with atherosclerosis [38]. Limited technology exists to predict perfusion response to acute
occlusion due to embolus (i.e., embolic stroke) and to chronic occlusion due to
atherosclerosis (i.e., carotid or other large vessel stenosis), in particular for patients with an
incomplete circle of Willis. These clinical scenarios typically occur in older patients, who
have a limited ability to compensate to acute changes in blood flow and thus are at greater
risk for developing an acute ischemia (stroke) or chronic hypoperfusion. The significance of
these problems cannot be underestimated since stroke ranks third among the leading causes
of death and is the leading cause of disability in older adults [11]. Therefore patient-specific
modeling is critically important to plan and predict perfusion needs in patients with
significant carotid artery stenosis who need surgical repair.

One way to assess the state of the blood flow to the brain is to use a fluid dynamic model
combined with subject-specific anatomical information. Fluid dynamic models have long
been used to predict blood flow dynamics in almost any section of the arterial system; see,
for instance, [7,8,56] for classic studies and [12,13,28,29,64] for more recent work. A
number of existing fluid dynamic models have been proposed to predict blood flow in the
circle of Willis. These models include one-dimensional approaches
[2,16,17,41,4051,61,60,66], two-dimensional approaches [25,26,44], and three-dimensional
approaches [3,15,24,51,50]. Due to the complexity of the underlying problem, vessels are
usually treated as rigid in three-dimensional calculations. More complex models have,
however, been considered (see, for instance, [21,27,31,52]) but usually for geometries
significantly simpler than the circle of Willis. On the other hand, one-and two-dimensional
models allow the inclusion of fluid structure effects relatively easily but at the price of
severely simplified fluid dynamics. As noted in [16], most of the above models are
qualitative and should be taken some steps further to make possible patient-specific studies
and thereby provide powerful clinical tools which would greatly benefit neurosurgeons and
patients.

The goal of this paper is to show that proper one-dimensional models can lead to simple and
reliable predictions of blood flow circulation in the circle of Willis. The present contribution
differs from previous work in two essential aspects. First, the vessel walls are taken as
viscoelastic, as opposed to rigid or elastic, as in most previous work; see section 2. While
viscoelasticity of the arterial wall is by itself not new (see, e.g., [12]), the model considered
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here includes both stress and strain relaxation.2 Second, thorough comparison and
calibration of the model to experimental results are conducted; see section 6. The original
data used here was obtained using digital Doppler technology (see Figure 1(right)), MRI
imaging, and noninvasive finger blood pressure measurements. Previous studies of cerebral
blood flow have used MRI measurements to obtain detailed patient-specific geometries
(e.g., [15,50]). However, patient-specific information was not used to obtain the remaining
model parameters. This is done here through ensemble Kalman filtering (see section 5),
which is used to calibrate various computational boundary conditions; see section 3. To the
authors’ knowledge, combining fluid dynamic simulations for arterial networks with
parameter identification methodology is fairly new. As such, it provides one more step
toward patient-specific predictive models as set forth by Charbel et al. [16].

The rest of the proposed approach is relatively standard and is based on conservation of
mass and momentum; see section 2. In each vessel, a system of balance laws has to be
solved. When compared to elastic models (see, e.g., [2]), the present system has an
additional equation per vessel. The computational domain is linked to the rest of the vascular
system through boundary conditions as described in section 3, where the conditions at vessel
bifurcations are also discussed. Discretization techniques are introduced in section 4.

2. Derivation of the model

The following assumptions are semistandard in one-dimensional hemodynamics and are
adopted here:

« the blood density is constant;

» the blood flow is axisymmetric and no has no swirl;

» the vessels are tethered in their longitudinal direction;

» the equations are expressed in terms of variables averaged on cross-sections.

Further, the flow is assumed to obey to the incompressible Navier—Stokes equations

pOm+u-Vu) -V - o=pg, (2.1)

V - u=0, (2.2)

where p is the density, u is the velocity, ¢ is the stress tensor, and g is the acceleration due to
gravity. The stress tensor is ¢ = —p I + 2ue, Where p is the pressure, ¢ = % (Vu + FuT) is the
strain rate tensor, and u is the dynamic viscosity. Although not done here, the possible non-
Newtonian behavior of blood can be accounted for by letting x depend on ¢; see section 7,
Conclusions. However, in the present study, the constant values x = 4.50 g s™1 cm™1 for the
dynamic viscosity and p = 1.055 g/cm? for the density were used.

Each vessel is assumed to be axisymmetric with a variable diameter. In each individual
vessel, cylindrical coordinates (r,8, x) are used with x being the distance on the longitudinal
axis. Further, the shape of each axisymmetric vessel is described by a function R such that

2Ina previous study [65], we showed that for most of the larger arteries, including the carotid artery, it is not possible to accurately
predict pressure as a function of area without accounting for both of those factors.
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R(x, t) is the actual radius of the vessel at the point x on the x-axis at time t. Using those
coordinates and the above assumptions, the velocity is u = {uy, 0, ux).3

The mechanical reactions of the arterial walls are assumed to follow the viscoelastic law
corresponding to the Kelvin model (see [30])

Eh
P — Po+Ta0ip=—(5+7:0:5),
1o (2.3)

A
where s=1 = 4/ f (see [65]), A = zR2, and 7, and z.are relaxation times.

After characteristic quantities are considered (see Table 1), nondimensional quantities can
be introduced in a standard way. The axial velocity ug is assumed much larger than the
radial velocity vy, i.e.,

Vo < Ug. (2.4)

Switching to nondimensional variables, the final equations are obtained through averaging
on cross-sections [43,55]. At the wall, the fluid is assumed to move with the vessel. More
precisely, if (r(t), x(t)) are the coordinates of one particle on the wall of the vessel, then

r(t)=R(x(1), ().
After averaging, the continuity equation (2.2) becomes

01A+0,0=0, (2.5)

where Q:27rf§uxr dr is the dimensionless flux. Using (2.4) and integrating the r-momentum
equation from (2.1) over a cross-section leads to

1
fg('),‘p rdr=0 < p(R, x, r):Efgp(r, x,0)dr = P(x,1).

The pressure p is additionally assumed to be independent? of r, i.e., p = P. The x-momentum
equation from (2.1) is now integrated, yielding

[ kA,

1
0,Q+0y (27rf§u§ rdr) +A d0,.P= 7—{R Ority(R, x, 1) — 7 2.6

3The assumption of an axisymmetric flow is not strictly necessary to the derivation of models similar to the present one [43].
This is automatically satisfied if g = 0 and/or if ey - ez = 0, with ey and ez being the unit vectors in the z and r directions, i.e., for a

vertical vessel.
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with e, and k being the unit vectors in the x and vertical directions, respectively, and where
the Froude and Reynolds numbers are defined in Table 1.

To close the model, an additional assumption is needed to relate uy to the averaged
quantities A, Q, and P in terms of which the entire problem will be expressed. Let U = Q/A
be the average axial velocity. The axial velocity uy is sought with the following profile:

. Y
. x.0=22 U, r)(l —( ! ) )
5 R0 @7

In (2.7), 2 determines the profile (for instance, 2 = 2 corresponds to the classical Poiseuille
profile; see Figure 2), while the factor (1 + 2)/2 ensures that the average of uy is indeed U.
The parameter /1 is taken as constant = 2 in each vessel in the present study; see the remarks
at the end of section 6 for a justification.

The x-momentum equation (2.6) can now be re-expressed in terms of the averaged variables

R A F (2.8)

The system is closed by nondimensionalizing and averaging the Kelvin relation (2.3).
Replacing p by P and using the continuity equation (2.5), one finds

2 2
(1-4717),

1 _3/'7 1
AT70,Q0=—(1 - P)+ =
0:0=3p(1 = Pra5os (2.9)

2

T
(7,P + =
T

o

Eh

where the Mach and Weissenberg numbers are defined in Table 1 and €0= 4/ 55 is the
Moens—Korteweg wave propagation speed; see Table 2.

In summary, the model can be written as

A
@+Bdy)| Q |=G,
P (2.10)
where
0 1 0
B=| -:(9)” 24 A
0 = A2
Eelve
and
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0
“g-gA
LU= Py 2o(1- A1)

wM2

The eigenvalues of B are found to be

+2 +2 21,
A= Q—\/ Y (%) + 2T am0,

ST A + (y+1)? AMCAL2
(2.11)

Assuming A > 0, the three eigenvalues are real, ensuring the hyperbolicity of (2.10).
However, without further assumptions, the sign of 1 3, the strict hyperbolicity of the system,
and the genuine nonlinearity of the first and third fields cannot be established.

3. Boundary and junction conditions

The vessels forming the circle of Willis are shown in Figure 3; the lengths and diameters of
these are given in Table 2. Boundary conditions link the circle of Willis to the cerebral
network of smaller arteries and represent the net impedance imposed by the
microcirculation. As can be seen from Figure 3, such conditions have to be imposed at the
“end” of 9 vessels.

All attempted simulations with realistic parameters have led to two observations:
e A <0,23>0,
» the solutions are smooth.

As a result of the first observation, the resolution of the equations in each vessel requires
that one scalar condition has to be enforced at each end of that vessel to ensure well-
posedness. The second observation is used below to significantly simplify the treatment of
junction conditions.

For three of the vessels (basilar artery as well as left and right internal carotid arteries),
inflow conditions are imposed whereby the velocity is prescribed and corresponds to
experimental measurements; see section 5. In other words, since the velocity is related to the
unknowns through U = Q/A, the following conditions will be imposed at the end of the
corresponding vessels and at all times:

Oves=UyesAves, ves € {BA,LICA,RICA}, (3.1)

with the obvious haming convention; see again Figure 1, Figure 3, and Table 2. The
velocities Uygg in (3.1) are experimentally determined time-dependent functions, and the
surface areas are computed from the average radii from Table 2. The remaining conditions
are outflow boundary conditions. Those conditions have to mimic the effects of the rest of
the vascular system on the circle of Willis. While the issue is delicate and deserves further
research, simple ad hoc conditions can be used. In the present work, two such types of
conditions are considered. Pure resistance boundary conditions have the form (see, for
instance, [60])

Multiscale Model Simul. Author manuscript; available in PMC 2008 November 25.
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P\’()s:RresQrc:,
ves € {LPCA2,RPCA2,LMCA,RMCA,LACA2,RACA?2}. (3.2)

Alternatively, boundary conditions based on the three-parameter windkessel model can be
used; this model includes two resistors and one capacitor; see, for instance, [2,55,54,57,61].
This corresponds to

RS, +RE, 1
R} 0,0+ —5——=Q=0,P+———P,
ves Cves ves Cves (3.3)

where, for each vessel ves in the same list as in (3.2), RY,. and R}, are resistance parameters
and C,s is a compliance parameter.

Junction conditions link vessels to their neighbors. The mathematical derivation of proper
junction conditions for systems of conservation laws is nontrivial; it is in fact an active field
of research; see, for instance, [10,18,19,42]. The present system of equations (2.10) is not in
conservation form, which further complicates the problem. However, as mentioned at the
beginning of the section, only smooth solutions are expected (and observed), and thorny
questions of selection principles [33,34,32] can be avoided.

Consider a junction J at which Nj vessels intersect. Continuity of the pressure and
conservation of the flow are imposed:

P\=P)=---=P, ,
N]

Zl 0:=0,

=

(3.4)

where the flux Q; is counted positive if flowing toward J; see [9, p. 59] for a justification.
Other choices have been considered in the literature such as continuity of the total pressure;
see [28,49,55,59] for further discussions.

4. Numerical analysis

The equations are discretized in space using Chebyshev collocation methods [14]. Such
methods deliver high accuracy with a low number of nodes for smooth solutions (which are
expected here). Working in the standard [—1, 1] interval to simplify the notation, Chebyshev
collocation is considered at the usual Chebyshev—-Gauss—Lobatto nodes:

_rj:cos(Nﬂ_Jl), j=0,...,N -1,

where N stands for the number of nodes. If v is any of the above unknowns to be determined
for x €[-1, 1] and t > 0, we seek an approximation of it of the form

Multiscale Model Simul. Author manuscript; available in PMC 2008 November 25.
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N-1
vy (e 0= Viou (0,
J=0 (4.1)

where {¥ j}?];ol are the Lagrange interpolation polynomials at the Chebyshev—-Gauss—Lobatto
nodes on [-1, 1]; i.e., wi(X)) = dij, 1, =0, ..., N = 1, and the Vj’s are time-dependent
coefficients to be found. Interpolation on the above nodes of a function v = v(x, t) simply
takes the form

N-1

Lv(x. 0= ) v(x. DU (2)

=0

By definition, the Chebyshev collocation derivative of v with respect to x at those nodes is

then
P N-1 N-1
o)1)= 3 G W ()= ) Dijr(xj ),
’ =0 =0

with D1j=l//;-(x1). The collocation derivative at the nodes can be obtained through matrix
multiplication by I, which admits the Dy;’s as entries.

We introduce the numerical method on a simple advection equation for ease of exposition:

Ou+a d,u=0, (4.2)

11(_1a1)=g(f)’ (43)

where a >0 and g is a given function describing the inflow boundary condition. Spatial
semidiscretization using the above principles and notation leads to

Oty +a 0y, =0.

The latter relation is enforced at the internal nodes, and an extra condition is imposed to
ensure the verification of the boundary condition (4.3). Typically, that condition is simply5

S|t has been observed that such a condition may lead to both theoretical and practical stability problems (for instance, the structure of
the derivative matrix I is essentially altered [35]). To alleviate these problems, weak implementation of the boundary conditions
through a penalty method has been proposed; see [22,35,39]. This type of method has been tested here and was not found to be
necessary.

Multiscale Model Simul. Author manuscript; available in PMC 2008 November 25.
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uy(xy_ . H=g(1).

The above method can be applied in a straightforward way to (2.10). Each of the variables
A, Q, and P is discretized according to (4.1), leading to the new unknowns Ay, Qu, and Py.
As said in section 3, the system (2.10) requires two boundary conditions, one at each end of
the vessel. With respect to a given junction, this corresponds to a boundary condition for
each vessel involved. For illustration purposes, consider a standard vessel bifurcation with
one parent vessel and two daughter vessels. Since there are three vessels related to this
junction, we will need three boundary conditions. As stated previously, these take the form
of (3.4). Thus, in this case, we will have one flow condition and two pressure conditions.
This is consistent with the number of conditions needed based on a study of the
characteristics of the system.

This results in the following semidiscretized system:

1 I
2 UsBW @ DYU=G+F|U, LU,
dt dt

where U = [A(Xg, 1), ..., AXN—1, 1), Q(X0, 1), +.., Q(XN-1, 1), P (X0, 1), ..., P (Xn—1, D]T, G is
the vector obtained in a natural way from Gy (discretization of G from (2.10)), I3 is the 3 x
3 identity matrix, and ® is the Kronecker product [20]. Finally, all of the contributions from
the boundary conditions have been lumped into I, and the matrix B is defined as

{BII.OBU.I s B11N_1BIZ.OB12.I v B13_N_1Bl3.OBl3.l ce B;s__v_lBZI.OBll.l “e Bgl‘N_lBZZ.OB?.ll . B:L\'_xBZlOBlll ce Bg}_\'_jB3l.0B31.l ae

with Bijx = By,ij(X), where By is the matrix corresponding to the discretization of the matrix
B in (2.10).

Two different methods have been considered for temporal discretization: a third-order
explicit TVD Runge-Kutta method [36,62,63] and a simple backward Euler method. In the
first case, the stability of the above numerical approach applied to (4.2), (4.3) (with g = 0)
was analyzed in [46]. Their stability result (see Theorem 4.2) is “adapted” to an empirical
stability condition for the present case. More precisely, the size of the nth time step At" is
adapted during the calculations and taken as

- C
Aoo(N = 1D

where L IS the maximum over all spatial nodes of the spectral radius of the matrix By at
the current time and C is a constant. However, for the problems at hand, it was observed that
the backward Euler method with a limited number of Newton steps as the nonlinear solver
was faster overall and leads to results quantitatively comparable to more elaborate TVD
solvers. The use of an implicit solver allows us to implement the boundary conditions
directly on the primary variables without having to switch to the characteristic variables.
Thus, the boundary conditions are implemented by simply removing the appropriate
differential equation corresponding to the boundary node and replacing it with an equation
for the boundary condition. The results shown below were obtained using the backward

Multiscale Model Simul. Author manuscript; available in PMC 2008 November 25.
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Euler method. After appropriate numerical convergence study, it was determined that
solutions computed with as little as four collocation nodes per vessel and two Newton steps
per time step are roughly within 5% of the fine mesh solutions.

5. Data analysis

The data analyzed in this study was obtained from one healthy volunteer during rest in the
supine position.

Velocity measurements were obtained using digital transcranial Doppler technology® using
a protocol approved by the Institutional Review Board at the Beth Israel Deaconess Medical
Center. The basilar, left and right carotid, and middle anterior and posterior cerebral arteries
were insonated using a 2 MHz transducer stabilized using a three-dimensional holder.
Recordings were made from the occipital (basilar) and temporal windows (remaining
arteries), ensuring a maximal velocity at a given depth (the depth indicates the location of
recording within the insonated vessel with respect to the transducer). The Doppler
technology uses a power mode to visualize the distance of the recording site from the
transducer (depth); see Figure 1(right), top panels. The red color (seen only in the online
version) denotes that the flow in the insonated vessel is toward the transducer, and the blue
color denotes the flow away from the transducer. The bottom panels show the Fourier
spectrum and its envelope, which are used for calculation of blood flow velocity.

Blood pressure was measured using a continuous noninvasive finger arterial blood pressure
monitor’ that reliably tracks intra-arterial blood pressure when controlled for finger position
and temperature [53]. Since in this study the subject was in the supine position and the
finger was kept at heart level, adjustment for gravity was not needed. In addition, the
electrocardiogram (ECG) was measured using standard leads. For each vessel, one-minute
continuous recordings of all parameters were gathered. Typical ECG, pressure, and velocity
measurements are shown in Figure 4.

All analog signals were recorded at 500 Hz and stored for offline processing.8 Since
measurements were not simultaneous, they include variations in the length of the cardiac
cycles. The pressure and velocity data were then postprocessed and aligned using the ECG
and equidistantly resampled to a one-second period. A cardiac cycle of 1 second is slightly
longer than the average cardiac cycle observed for this subject but within standard values for
healthy young people [37].

Geometric measurements of vessel lengths and areas were derived from a magnetic
resonance angiogram.® The radius and length of the vessels were measured by the software
Medical Image Processing, Analysis, and Visualization (MIPAV) from the Biomedical
Imaging Research Services Section, National Institutes of Health, Bethesda, MD. For each
vessel, the diameter was measured at three locations and averaged. Therefore, differences
and variations in vessel diameters along the vessel length may not be detected. ICA
diameters were computed from a single slice transverse view, while other diameters and
vessel lengths were measured from reconstructed three-dimensional images. The accuracy of

5pMD 150, Terumo Cardiovascular Systems and Spencer Technologies, Inc., Ann Arbor, MI.

7Ohmeda Monitoring Systems, Englewood, CO.

8This was done using Labview NIDAQ (National Instruments Data Acquisition System 64 Channel/100 Ks/s, Labview 6i, Austin,
TX) on a PC that is currently in use at the SAFE (Syncope and Falls in the Elderly) Laboratory.

Anatomical images of intracranial vasculature were obtained using three-dimensional-MR angiography (time of flight) with the
parameters TE/TR = 3.9/38 ms, flip angle of 25 degrees, 2 mm slice thickness, —1 mm skip, 20 cm x 20 cm FOV, 384 x 224
acquisition matrix, size 512 x 512, and pixel size 0.39 mm x 0.39 mm at the GE VHI 3 Tesla scanner at the Center for Advanced
Magnetic Resonance Imaging at the Beth Israel Deaconess Medical Center.

Multiscale Model Simul. Author manuscript; available in PMC 2008 November 25.
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those geometric measurements is conservatively estimated at +0.4 mm, based on the image
resolution. Averaged lengths and diameters are given in Table 2.

These recordings provided data for our three inflow vessels (the basilar, left, and right
carotid arteries) and for the six outflow vessels (the left and right ACA, MCA, and PCA).

The inflow velocity measurements from the BA and ICAs are used to drive the system. With
the exception of a small subset used for calibration, the outflow velocity (in MCAs, PCAs,
and ACAs) data are used only a posteriori to validate the results. Geometric area data are
used to specify the model domain and to determine inflow into the model provided the
measured velocity.

Kalman filtering is a recursive algorithm that can be used to optimize parameters in a linear
model. It uses model results and data values at each time step to adjust the parameters until
the optimal parameters have been found. The model is used to create the model forecast, x',
and then updated based on available data to create the model analysis, x. Specifically, x2 is
a weighted linear combination of the state predicted by the model, x', and the covariance
related to the measurements [23]. This linear combination is determined by the Kalman gain,
K, which is central to all types of Kalman filtering.

The matrix K is chosen to minimize the a posteriori error estimate, x — x&, where x is the true
state. This is equivalent to minimizing the trace of the analysis error covariance, P2 = cov(x
— x&). Using the definition of x2 and the properties of covariance and taking the trace of the
resulting expression for P2 leads to

K=P'HT (HP'HT+R) ",

where Pf is the forecast covariance, H is the measurement operator, and R is the
measurement covariance.

When dealing with a nonlinear problem, one can use the extended Kalman filter, which
requires the direct calculation of an error covariance matrix at each time step, or the
ensemble Kalman filter (EnKF), which approximates the error covariance matrix using an
ensemble of states. The EnKF has been used in this work to avoid the costly direct
calculation of the error covariance matrix.

To begin, the initial conditions are perturbed in a statistically consistent way in order to form
the ensemble of states. At each time step, each of the ensemble members is stepped forward
in time, using the model, to create the a priori state estimates. The Kalman gain is then used
to create the a posteriori state estimates as weighted averages of the a priori state estimates
and the discrepancies between the predicted measurements and the actual measurements
[67]. Since the EnKF uses estimates based on the ensemble members to create the Kalman
gain, the larger the ensemble size the better the results will be [23].

6.1. Calibration

The EnKF has been used to optimize the parameters for both the resistance outflow
boundary conditions and the windkessel outflow boundary conditions. In each case, an
ensemble size of 100 was used. After processing all the calibration data (an eight period
subset of the available data), the final parameter values are considered to be the optimal

Multiscale Model Simul. Author manuscript; available in PMC 2008 November 25.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

DEVAULT et al.

Page 12

values based on the data. The model is then run using the original initial conditions and the
optimized parameters, and the results are compared to the data.

Figure 5(top) shows a comparison of the experimental data and the model output using the
pure resistance boundary condition in the L MCA over one cardiac cycle. The results using
the parameters obtained from the EnKF clearly provide a better fit to the data. Figure
5(bottom) shows a similar comparison, this time with the model results obtained using the
windkessel boundary condition. In this case, the original parameters were chosen by
adapting the values from [2], and therefore the switch to the EnKF optimized parameters
provides less of an improvement. While both boundary conditions yield comparable results,
the windkessel results are marginally most accurate.

It is also important to consider the associated pressure data. Since the blood pressure was
measured in the finger and not in the brain, the model results are not expected to match the
data, but they should be in roughly the same range. Figure 6 shows a comparison of the
pressures from the model with the pressures from the data in the L MCA. As expected, the
waveforms are not the same, but they are similar.

6.2. Validation

Validation of many blood flow models is limited by the lack of available data and is
therefore usually qualitative in nature. Access to clinical data allows the present approach to
be validated in a quantitative manner.

Since the cardiac cycle varies over time, even in a single subject, a given set of outflow data
is not expected to be matched exactly using a given set of inflow data collected at a different
time. Instead, all of the available data is processed, and a mean velocity profile is calculated
for each inflow and outflow vessel, along with the associated variances; see the blue and
green curves (color only in the online version) in Figures 7 and 8. The available number of
measurements, i.e., periods, per vessel varies between 20 and 200.

The simulation is then run with 20 different stochastically perturbed inflow velocity profiles.
The inflow conditions are determined by stochastically perturbing the mean change in
velocity at each time step to avoid creating artificial roughness in the wave form; the
perturbations are drawn from a normal distribution based on the data. The means of the
resulting inflow velocities are displayed in Figure 7. The mean predicted velocity in each
outflow vessel is compared to the corresponding mean velocity profile from the data; see
Figure 8. The breakdown of how well the model results match the data is shown in Table 3.
As is evident from both the figures and the table, the model is predicting the velocities at
each of the six outflow points consistently.

Figure 9 shows the results of running the deterministic model (where the inflows are taken
from the data, not from perturbations of the means) in the L MCA over a number of cardiac
cycles. The agreement with the pressure data is expected to only be qualitative since, as
explained in section 5, the pressure is measured at a fingertip rather than in the vicinity of
the vessels under study.

Some of the physiological parameters used in this study are extremely hard to measure. For
instance, no measurements were available for y which determine the flow profile (see Figure
2) or for the relaxation times z<and z,; see (2.10). While the above results were obtained
with y = 2, it has been argued that higher values of y might be more realistic; see, for
instance, [12,28], where y = 9 is used. Figure 10(top) shows a comparison of the numerical
solution in one typical vessel for both y= 2 and y = 9. In each case, the numerical parameters
of the boundary conditions were optimized as done above, while all other physiological
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parameters were held constant. The y = 2 results are in better agreement with the data. In all
previous calculations, the values 7= 7, = .125 are used. Note that having z = rdr, = 1
roughly corresponds to an elastic model. In Figure 10(bottom), results for 7, = .01 and 7=
04 (i.e., z = 4), which are the values suggested in [65], are compared. It can readily be
observed that the value of the ratio z has very little influence on the velocity. The same was
observed for the pressure. For 7 = 4, pressure vs. area shows as expected a hysteretic
behavior; see Figure 11 for a typical plot. This difference results from changes in the
calculated cross-sectional areas. Since we are interested in matching the outflow velocities
to those available in the data, viscoelasticity does not seem to play a central role in the
present problem.

7. Conclusions

The proposed model and implementation agree remarkably well with the data in spite of
their simplicity. A comparison with results from 1.5-dimensional models such as those
proposed in [12,13] would be interesting. The present work is in the process of being
extended in several directions. First, the method will be used to predict the effects of various
pathologies including flow pattern in abnormal circles of Willis from patients with diabetes
and for patients with hypertension. Second, while the assumption of Newtonian behavior of
the flow is generally considered valid at high shear rates, say over 100 s1, the observed
numerical shear rates are lower here. Non-Newtonian effects can be included through the
use of the Cross model; for the viscosity, see, for instance, [1,45];10 see also [6].
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Fig. 1.

(A) Structure of the circle of Willis basilar artery (BA); right posterior cerebral artery (R
PCA), left posterior cerebral artery (L PCA), right posterior communicating artery (R
PCoA), left posterior communicating artery (L PCoA), right internal carotid artery (R ICA),
left internal carotid artery (L ICA), right middle cerebral artery (R MCA), left middle
cerebral artery (L MCA), right anterior cerebral artery (R ACA), left anterior cerebral artery
(L ACA), anterior communicating artery (ACoA); (B) time of flight magnetic resonance
angiography of the circle of Willis; (C) blood flow velocities measurements obtained by
transcranial Doppler ultrasound for the right anterior cerebral artery (R ACA), right middle
cerebral artery (R MCA), and right posterior cerebral artery (R PCA).
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Fig. 2.
Velocity profiles corresponding to (2.7) 2 = 2 (Poiseuille), 1 = 4, and 1= 9.
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Fig. 3.

Topology of the circle of Willis and numbering convention (see also Figure 1 and Table 2);
inflow conditions are marked with a wave, while outflow conditions are marked with a
windkessel circuit with two resistors and a capacitor.
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Typical raw data file: top graph shows the ECG; middle graph shows finger blood pressure
p; and bottom graph shows blood velocity in the R ICA.

Multiscale Model Simul. Author manuscript; available in PMC 2008 November 25.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

DEVAULT et al.

Page 21

L MCA - Resistance Outflow

3

£

e

2

8

© x"xxx,(x
> "xx""xxxxxxxx" *

20 | 1 Il 1
1 1.2 14 1.6 1.8 2
time (s)
L MCA - Windkessel Outflow

Q)

£

L

2

I9)

o

(0]

>

20 1 1 Il 1
1 1.2 14 1.6 1.8 2
time (s)

Fig. 5.

Comparison of model velocity results to velocity data in the L MCA using (top) the
resistance outflow boundary condition and (bottom) the windkessel outflow boundary
condition; solid (blue) line: data, x: model-original resistance parameters, o: model-EnKF
optimized resistance parameters.
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LMCA
200

Fig. 6.

Comparison of model blood pressures to data before and after running the EnKF; solid
(blue) line: data, x: model-original resistance parameters, o: model-EnKF optimized
resistance parameters.
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Fig. 7.
Mean inflow velocities used to run the stochastic version of the model; blue line: x, green
line: i * o, dashed line: i £ 20, X: resulting mean inflows.
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Mean outflow velocities resulting from running the stochastic version of the model over 20
realizations; blue line: u, green line: u + o, dashed line: u = 20, x: mean predicted outflow.
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Comparison of model results to data in the L MCA over multiple cardiac cycles; solid line:

data, x: predicted outflow.
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Fig. 10.
Comparison of model results to data in the L MCA over two cardiac cycles. Top: influence
of y; bottom: influence of the relaxation times z, and z¢ (r = tdz,).
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Fig. 11.

Pressure vs. area behavior for L MCA with = 1 (essentially elastic), top, and z = 4
(viscoelastic), bottom. The “tails” correspond to the initial condition; time goes fromt=0to
8 sas in Figure 9.
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Table 1

Characteristic quantities and nondimensional parameters.

Characteristic quantities
flow: go axial velocity: @
uO:AT
radius: ro length: o
Xp=-5*
radial velocity: Vo time: P
=55
surface area: , Pressure: 5
Ap=nry Po=p Uy
Nondimensional parameters
Reynolds number: ) Froude number:
R: Provo ?- upp
Iy =
Weissenberg number: . Mach number: B
W= =
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Table 3

Page 30

Percentage of time the model mean is within one or two standard deviations (o) of the data mean () in each of
the six outflow vessels.

% within (u — o, u + o)

% within (u — 26, u + 20)

R PCA
L PCA
R MCA
L MCA
R ACA

L ACA

66
48
16
54
32
40

90
100
100
100

98

84
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