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Abstract

As part of the PhysioNet/Computing in Cardiology
Challenge 2020, we developed an end-to-end deep neu-
ral network model based on 1D ResNet and an attention-
based multi-instance classification (MIC) mechanism,
named as MIC-ResNet, requiring minimal signal pre-
processing, for identifying 27 cardiac abnormalities from
12-lead ECG data. Our team, ECGLearner, achieved a
challenge validation score of 0.486 and a full test score of
0.001, placing us 33 out of 41 in the official ranking of this
year’s challenge.

1. Introduction

Cardiovascular diseases are the primary cause of death,
and they greatly impact daily life across all demograph-
ics. The ECG signal is a common and important screening
and diagnostic tool for heart conditions. Given past exam-
ples of ECGs and annotations, deep neural networks can
perform a supervised learning to learn features of different
conditions directly from ECGs for diagnosis.

Following the PhysioNet/Computing in Cardiology
Challenge 2020 which promoted automated and open-
source approaches for classifying multiple cardiac abnor-
malities from 12-lead ECG [1}2], we developed a novel
open-source deep learning model called MIC-ResNet,
which combines ResNet [3] for time series and multi-
instance classification (MIC) to classify multi-center pa-
tient ECG for 27 different conditions. The code is avail-
able athhttps://github.com/SeffyVon/ECG.M
ICResNet!

2. Methods

As shown in Figure [T, our MIC-ResNet comprises
three major components: an encoder module based on 1D
ResNet; a MIC module; and a decoder module to produce
an output of 27 classes going through a sigmoid function.
The definitions for the acronyms of the abnormalities are
listed in [2]).
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Figure 1: Architecture of MIC-ResNet.
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The only preprocessing step that we performed was to
filter the ECG by applying a fourth-order Butterworth filter
with a passband of 0.5 to 50Hz for each lead of each patient
signal. We did not normalize the signal, as we believed that
preserving amplitude of the raw ECG signal was important
for some conditions such as low QRS voltages.

2.1. 1D ResNet Encoder

ResNet [3] is the state-of-the-art deep network for mul-
tiple types of data, from images to time series [4}[5], and
has been successfully applied to cardiac abnormality de-
tection using ECGs, such as [6]. It benefits from a shortcut
module, which enables the network to go deep, whilst re-
maining relatively low in complexity, thereby making the
learning easier.
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Figure 2: Encoder module in the MIC-ResNet.

We used a customized 1D ResNet as an encoder (in Fig-
ure [2)) to transform a 12-channel ECG segment of S sam-
ples, to a lower-dimensional (F-dimensional) embedding,
adapted from the original 2D ResNet [3]]. The encoder was
composed of a 1D convolutional layer (ConvID) which
took I, O as the input and output channel sizes, and K
as the kernel size, a batch normalization function (Batch-
NormlD) [7]], a non-linear activation function (ReLU) [8§]],
a max pooling function (MaxPoollD) with a kernel size of
Py, and then followed by three building blocks (ResNet-
Blocks), where each block took an input signal with [ in-
put channels and produced O output channels. The ker-
nel sizes K1, Ko,and K3 for the three ConvID layers in
the ResNetBlocks came from a strong baseline 1D ResNet
model for time-series classification [5]. An adaptive aver-
age pooling (AdaptiveAvgPooll D) with output length of 1
was placed at the end, to automatically select the stride and
the kernel size in order to produce E outputs of length-one
channels.

2.2. Attention-based MIC

MIC refers to a type of classification problems in which
the data samples are instances in bags, and a label is only
available for each bag rather than for each instance. Con-
sider a patient ECG recording as segments of a smaller
fixed length, for conditions that do not occur in each heart-
beat, such as PAC, only some segments are positive for
PAC. MIC “pools” the instance probabilities (or labels) to
compose the probability (or label) of the bag. By using
a bag of K segments of S samples to represent an ECG
recording of various lengths, we have spanned our search
range of the ECG from K samples to K x S samples with
the same encoder, without assuming that each fixed-length

segment was positive.

We adopted an attention-based MIC framework pro-
posed in [9)]. For a bag of K instances going through
the encoder, we obtained K embeddings as H =

{h1,ha, ..., hi}. The MIC pooling was then
K
z = Z akhk (1)
k=1
where
exp{wT tanh VhI}

2

"TYE T tanh V7
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The attention module was made of two fully connected
(FC) layers with a tanh(-) layer in the middle, where the
first FC layer was to learn the weight V € RP*F  and the
second to learn the weight w € RP*M | together with the
transpose operation and the Softmax layer, implemented
Eq @), and K was another hyperparameter to be opti-
mized. A tensor multiplier M = A x H implemented
Eq (I), and the resulting M went through a FC decoder to
produce an output of C' dimensions.

2.3. Implementation

As all patient ECGs were sampled at S00Hz, each con-
taining a varying number of at least 2500 samples, we
picked S = 3000 samples representing 6 second intervals
as the training input to the ResNet 1D, so the bag input had
dimensions of (B, K,12,S). Zeros were padded on the
end of recordings with less than S samples. To augment
the training set, we randomly sampled K instances of S
samples for a training input across the whole ECG record-
ing, whereas a validation input was composed of evenly
sampled K instances of S samples.

We represented the label of each sample as y =
[y1,Y2,.-.,yc], where C = 27 is the total number of
scored classes, and y; = 1 if class ¢ is positive and 0
otherwise. For those classes with an equivalent class,
we relabelled them as positive in a data entry if their
equivalent class was positive in the same entry. A multi-
label stratified 5-fold cross-validation [10] (using iterative-
stratification Python package version 0.1.6) was applied
on each of the six training datasets in [2] to constitute the
full training-validation set so that the training and the val-
idation sets in each fold have similar class distributions.
The class distribution is also similar across different folds,
keeping performance stable between different folds.

A binary cross entropy loss (BCELoss) was used as
the optimization target for the multi-label classification.
The total BCELoss was defined as the average of sam-
ple BCELoss, and for each sample of the network output
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Hyperparameters Value
Segment length (.5) 3000
Number of segments in a bag (B) 5
Positive class weight (p) 2
Encoder first Conv1D and MaxPool1D (K) 7
Encoder first MaxPool1D kernel (Fp) 3
ResNetBlock kernels (K7, Ko, K3) 7,5,3
ResNetBlock input output channels see Figure
Parameter for attention (D, M) 64,32
Smoothing term () 1

Table 1: List of hyperparameters.

x = [21, X2, ..., 2¢], the BCELoss of each sample was:

C
l=— Zwi [p-yi-logo(x;)+ (1 —y;)-log(l —a(x;))]

where o(-) is the sigmoid function. To consider for class
imbalance, the class weight for each class ¢ was defined as
in [[L1]):

c
N — n.
w; zlog#%—’y,]\fzzznj7
Jj=1

n; + 7y

where ¢ is the number of positive instances of class ¢, and
7 is a smoothing term, a larger class weight was given to
classes with small samples, and got optimized at a higher
priority. A positive weight p = 2 was added to the
BCELoss for all classes to give a higher weight for recall
than precision. We applied the sigmoid function to the net-
work outputs to obtain the predicted probability for each
class, and used 0.5 as a threshold for the binary label. All
hyperparameters in our method are summarized in Table[T]
We used the Adam optimizer [[12] with a learning rate
of 0.01, and rescaled with a factor of 0.1 when the vali-
dation loss reached a plateau for 10 epoch. We used mini-
batch gradient descent with a batch size of 64. The training
stopped when there was no reduction in the validation loss
for over 20 epochs. The network was trained in PyTorch
version 1.4, CUDA version 10.2 on a Quadro RTX 8000
Graphic Processing Unit. Each fold stopped at around 55
epochs and three hours. We averaged the validation losses
across five folds, and computed the optimal epoch produc-
ing the lowest averaged validation loss, and then trained
the network on the whole dataset for this optimal epoch.

3. Results

We compared our results with using instance-wise 1D
ResNet composed of only the encoder and decoder in Fig-
ure [l During training, only one segment of S samples
was drawn randomly from ECG for each training entry

and one central segment of S samples for each valida-
tion entry during training. During validation, we used the
same K instances as in MIC and made predictions for
the ECG on two modes: the First mode used the output
of the first instance, and the Max mode used the maxi-
mal amongst the K instances. The average competition
metrics on the training-validation set across five folds are
shown in Table. 2] and were broken down into differ-
ent classes in Figure 3] Figure ] showed a multi-label
confusion matrix on the training-validation set across five
folds, where its diagonal holds the true-positive (TP) rate
for each class j, defined as Npp(j)/N(j), and the rest
shows the false-negative (FN) rate of a class j, defined
as Npn(j — k)/N(j), where Nprp(j) and N(j) are the
number of TP entries and the total number of entries of
class j, respectively, and Npx(j — k) is the number of
entries where class j was a FN and was classified as class
k, but the ground truth of class & are negative in that entry.

On the hidden challenge datasets, our classifier, EC-
GLearner, received a validation score of 0.486 and a test
score of 0.001, with scores of 0.669, 0.452 and —0.347 in
the three test databases, respectively.
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Accuracy AUROC AUPRC F measure
Figure 3: Per-class challenge metrics over five folds of the
training-validation set.

4. Discussion and Conclusions

We developed a multi-label classifier for 12-lead ECGs
with an attention-based MIC. In Table 2] MIC showed
achieved the best scores overall on the training-validation
set. Although the Max mode received the best challenge
score, it biased towards recall. By aggressively selecting
the maximal probability, Max resulted in a low precision
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Accuracy AUROC AUPRC F measure Challenge Metric
MIC 0.936+0.002 0.551+0.003 0.523 £0.010 0.538+0.004 0.539+0.014
First  0.932+0.002  0.544 £0.007 0.528 £0.006 0.519 + 0.001 0.517 £+ 0.004
Max  0.935+0.002  0.550+£0.006 0.494+0.012 0.529+0.005 0.556 +£0.014

Table 2: Means and standard deviations of the challenge metrics over five folds of the training-validation set.
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Figure 4: Multi-label confusion matrix on the training-
validation set, where the diagonal shows the TP rate and
the rest shows the FN rate of classes.

for auprc and I}, whereas First received the best auprc
but the worst challenge score. On the other hand, MIC
took a balance between precision and recall, and we be-
lieve this is important. In Figure|3] the classifier achieved
an accuracy close to 1 and auroc > 0.8 in practically all
cases. The F-measure score shows that our model worked
the best for AF, CRBBB, NSR, and PR, which are all con-
ditions exhibiting abnormality in each beat, whereas the
worst were mainly conditions that did not occur in each
beat (e.g. PVC), or had abnormal amplitudes (e.g. Tinv),
duration (e.g. Brady), and abnormalities with multiple un-
derlying causes (eg. NSIVCB and QAD). In Figure[d] the
inter-class misclassification occurred the most from NSR,
followed by from TAb to QAb, between PAC and PVC,
and a few abnormalities were mistaken as LPR and TInv.

In conclusions, we developed an open-source deep neu-
ral network combining 1D ResNet with attention-based
MIC to predict for multiple cardiac abnormalities from 12-
lead ECG, receiving a validation challenge score of 0.486
and a test score of 0.001 for this year’s challenge.
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